ارزیابی پارامترهای موثر بر چسبندگی میلگرد فاقد طول مهاری کافی در آزمایش بیرون‌کشیدن میلگرد از بتن

نوع مقاله : پژوهشی اصیل (کامل)

نویسندگان
1 استادیار و عضو هیأت علمی مرکز تحقیقات راه، مسکن و شهرسازی
2 دانشجوی دکترای مهندسی عمران زلزله مرکز تحقیقات راه، مسکن و شهرسازی
چکیده
عملکرد میلگرد مدفون در داخل بتن، همواره یکی از موضوعات پیچیده و مهم در سازه‌های بتن‌آرمه به شمار می‌رود. یکی از آزمایش‌های رایج، در زمینه برآورد رفتار میلگرد در بتن، آزمایش بیرون‌کشیدن میلگرد (Pullout Test) است، ولی با وجود تحقیقات متعدد در این زمینه کاستی‌هایی به چشم می‌خورد. در این پژوهش، پنج آزمایش بیرون کشیدن میلگرد شامل چهار نمونه با بتن محصور شده و یک نمونه با بتن غیر محصور، با در نظر گرفتنِ سه قطر مختلف میلگرد انجام شد. به کمک نتایج حاصله و نتایج پژوهش‌های قبلی، برخی از پارامترهای مهم در زمینه رفتار چسبندگی و لغزشِ میلگرد، از جمله اثر مقاومت بتن، قطر میلگرد، فشاری یا کششی بودن نیروی وارده و محصورشدگی بررسی و روابطی با دقت مناسب برای آن‌ها ارایه شد تا بتوان با استفاده از این روابط، نتایج موجود و در دسترس را به حالت مورد نظر تعمیم داد. برای صحت سنجی و افزایش دامنه نتایج، از سه تحقیق معتبر دیگر در این زمینه استفاده شده است که دقت روابط و نتایج به دست آمده را تایید می‌نمایند. روابط حاصل از این تحقیق نشان داد که تنش چسبندگی، با افزایشِ 50 درصدی مقاومت فشاری بتن، تا حدود 20 درصد افزایش می‌یابد. به علاوه، بر اساس روابط ارایه شده، با تغییر قطر میلگرد از 20 به 22 و 25 میلی‌متر، برای یک مقاومت فشاری ثابت، تنش چسبندگی به ترتیب به میزان 13 و 27 درصد کاهش می‌یابد. همچنین عدم محصورشدگی نمونه، تنش چسبندگی حداکثر را تا 40 درصدِ تنش حالت محصور شده و لغزش متناظر با تنش حداکثر را بین 15 تا 30 درصد کاهش می‌دهد. فشاری بودن نیروی محوری میلگرد نیز در مقایسه با نیروی کششی، تا حدود 10 درصد تنش چسبندگی را افزایش می‌دهد.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Evaluation of Effective Parameters in Bonding Strength of Bars in Reinforced Concrete with Insufficient Development Length in Pullout Test

نویسندگان English

F. Farahbod 1
A. Shahrabi Farahani 2
1 Assistant Professor of Road, Housing & Urban Development Research Center (BHRC)
2 Ph.D. Student of Earthquake Engineering of Road, Housing & Urban Development Research Center (BHRC)
چکیده English

The performance of steel rebars in reinforced concrete is always complicated and important. Each reinforced concrete element contains two parts, including concrete and steel rebars. Under severe forces, the behavior of reinforced concrete structures and their elements is dependent on the interaction between steel and concrete. Due to the composite nature of these structures, their performance is complex and might be studied in different aspects. Incorrect evaluation of this item will lead to the wrong design. Although this performance affects all parts of a concrete structure, development length and lap splice are the most significant parts. One of the common tests, in evaluating the steel reinforcing bars' performance, is the pullout test, however, there are deficiencies in different investigations. In this research, five pullout specimens were tested, containing four specimens with confined and one with unconfined concrete, which had three different bar sizes including 20, 22, and 25 mm. Tests were conducted on 300 mm cube specimens and 250 mm development length of steel rebars which was insufficient. Rebars with sufficient development length have a different performance. The testing method was monotonic and the compressive strength of concrete was 23 MPa. Normally two cracking and damaging mechanism is observed. It is pullout of rebar or splitting of concrete. In confined concrete pullout occurs, while in an unconfined specimen, splitting of the concrete takes place so the bonding strength and axial force tend to zero much faster. Using these results and results from other researches, some important parameters in the field of bonding and slippage of rebars, including compressive strength of concrete, rebar size, force direction (pulling or pushing), and confinement of concrete were investigated and some equations with high accuracy were proposed to generalize available results to desired results. For verifying and increasing the range of results, three valid kinds of research are used, which confirm the accuracy of results and equations. This study showed that the bonding strength would increase 20 percent by 50 percent increase in compressive strength of concrete. Moreover, by changing the bar diameter from 20 to 22 and 25 mm, for a constant compressive strength of concrete, bonding strength decreases 4.3 and 10.6 percent respectively. By using the proposed equation, maximum bond strength for different bar sizes may be evaluated. Besides, maximum bond strength is reduced up to 40 percent of a confined specimen, and the slippage corresponding to maximum bond strength is reduced 15 to 30 percent as the result of using unconfined concrete. In the same way, for the same bar diameter, pullout force reduced up to 40 percent. The slippage corresponded to maximum bonding strength is about 1.4 to 2 mm for confined concrete and 0.25 to 0.45 mm for unconfined concrete. Bond strength and slippage of rebars vary in compressive and pulling forces. This is due to the axial behavior of the rebar's head in compression. The compressive axial force of the bar may increase the bonding strength up to 10 percent, comparing to pulling axial force.

کلیدواژه‌ها English

bonding of concrete to bar
slippage of bars
confined concrete
bonding strength vs slippage diagram
R. Eligehausen, V. Ciampi and V. Bertero, "Analytical model for deformed-bar bond under generalized excitations," Transactions of IABSE Colloquium on Advanced Mechanics of Reinforced Concrete, 1981.
R. Elingehausen, E. Popov and V. Bertero, "Local bond stress-slip relationships of deformed bars under generalized excitations," Earthquake engineering research center , Report No. UCB/EERC-83/23, 1983.
H. Shima, L.-L. Chou and H. Okamura, "Micro and Macro Models for Bond in Reinforced Concrete," Journal of the faculty of engineering, The university of Tokyo, vol. xxxix, no. 2, pp. 133-194, 1987.
C. E. -. I. D. Beton, CEB - FIP model code, 1990.
Alsiwat and Saatcioglu, "Reinforcement anchorage slip under monotonic loading," Struct. Eng., vol. 118, 1992.
M. Haskett, D. John Oehlers and M. Ali, "Local and global bond characteristics of steel reinforcing bars," Engineering Structures, no. 30, pp. 376-383, 2008.
M. Valcuende and C. Parra, "Bond behaviour of reinforcement in self-compacting concretes," Construction and Building Materials, no. 23, p. 162–170, 2009.
I. F. f. S. Concrete, fib Model Code for Concrete Structures, Wilhelm Ernst & Sohn, Verlag für Architektur, 2010.
B. Zho, R. Wu and J. Feng, "Two models for evaluating the bond behavior in pre- and post-yield phases of reinforced concrete," Construction and Building Materials, no. 147, pp. 847-857, 2017.
C. E. -. I. D. BETON, CEB - FIP model code, 1990.
A. C. 318, "Building Code Requirements for Structural Concrete (ACI 318M-19) and Commentary (ACI 318RM-19)," American Concrete Institute, 2019.
A. C. 318, "Building Code Requirements for Structural Concrete (ACI 318M-19) and Commentary (ACI 318RM-19)," American Concrete Institute, 2019.
A. C. 408, "ACI 408R-03 , Bond and Development of Straight Reinforcing Bars in Tension," 2003.
A. J. Bigaj, "Structural dependence of rotation capacity of plastic hinges in RC beams and slabs," in PhD thesis, 1999.
A. Bigaj, "Bopd beHavlour of deformed bars in NSC and HSC," Delft University of Technology, 1995.
C. O. Orangun, J. O. Jirsa and a. Breen, "The Strength of Anchored Bars: A Reevaluation of Test Data on Development Length and Splices," Research Report No. 154-3F, Center for Highway Research, The University of Texas at Austin, 1975.
Darwin, McCabe, Idun and Schoenekase, "Development Length Criteria: Bars Not Confined by Transverse Reinforcement," ACI Structural Journal, vol. 89, no. 6, pp. 709-720, 1992.
Zuo and Darwin, "Splice Strength of Conventional and High Relative Rib Area Bars in Normal and High-Strength Concrete," ACI Structural Journal, vol. 97, no. 4, pp. 630-641, 2000.