[1] Yang A., Wang Y. H., Hu J., Liu X. L., & Li J. (2020). Evaluation and source of heavy metal pollution in surface soil of Qinghai-Tibet plateau. Huan Jing Ke Xue= Huanjing Kexue, 41(2), 886-894.
[2] Li J. S., Xue Q., Wang P., & Li Z. Z. (2015). Effect of lead (II) on the mechanical behavior and microstructure development of a Chinese clay. Applied Clay Science, 105, 192-199.
[3] Nayak S., Sunil B. M., Shrihari S., & Sivapullaiah P. V. (2010). Interactions between soils and laboratory simulated electrolyte solution. Geotechnical and Geological Engineering, 28(6), 899-906.
[4] Mitchell J. K., & Soga K. (2005). Fundamentals of soil behavior (Vol. 3). New York: John Wiley & Sons.
[5] Ouhadi V. R., Yong R. N., Rafiee F., & Goodarzi A. R. (2011). Impact of carbonate and heavy metals on micro-structural variations of clayey soils. Applied Clay Science, 52(3), 228-234.
[6] Muththalib A., & Baudet B. A. (2019). Effect of heavy metal contamination on the plasticity of kaolin-bentonite clay mixtures and an illite-smectite rich natural clay. In E3S Web of Conferences (Vol. 92, p. 10005). EDP Sciences.
[7] Ewing R. C., Weber W. J., & Clinard Jr F. W. (1995). Radiation effects in nuclear waste forms for high-level radioactive waste. Progress in Nuclear Energy, 29(2), 63-127.
[8] Lee E. S., Cho S. J., Back S. K., Seo Y. C., Kim S. H., & Ko J. I. (2020). Effect of substitution reaction with tin chloride in thermal treatment of mercury contaminated tailings. Environmental Pollution, 114761.
[9] Torabi-Kaveh M., & Heidari A. (2020). Assessing effectiveness of thermal treatment and mixing with coarse-grained particles in stabilization of marly soils. Innovative Infrastructure Solutions, 5(1), 13.
[10] Yılmaz G., Koyuncu H., Guney Y., Ural N., & Bakıs R. (2004). Mechanical and microstructural properties of heated and polluted kaolinite and bentonite. In Key Engineering Materials (Vol. 264, pp. 1657-1660). Trans Tech Publications LTD.
[11] Joshi R. C., Achari G., Horsfield D., & Nagaraj T. S. (1994). Effect of heat treatment on strength of clays. Journal of Geotechnical Engineering, 120(6), 1080-1088.
[12] Ouhadi, V.R., and Pourzafarani, M., (2014). Characteristics change of kaolinite and bentonite due to the heat treatment from micro-structural aspects, Sharif Civil Engineering Journal,30( 2), 65-72.
[13] Geng J., & Sun Q. (2018). Effects of high temperature treatment on physical-thermal properties of clay. Thermochimica Acta, 666, 148-155.
[14] Pandian N. S., Nagaraj T. S., & Sivakumar Babu G. L. (1993). Tropical clays. Index properties and microstructural aspects. Journal of Geotechnical Engineering, 119(5), 826-839.
[15] Nayak S., & Preetham H. K. (2020). Effect of Drying Temperature and Rewetting on the Engineering Properties of Marine Clay. Transportation Infrastructure Geotechnology, 1-18.
[16] Tan Ö., Yılmaz L., & Zaimoğlu A. S. (2004). Variation of some engineering properties of clays with heat treatment. Materials Letters, 58(7-8), 1176-1179.
[17] Yilmaz G. (2011). The effects of temperature on the characteristics of kaolinite and bentonite. Scientific Research and Essays, 6(9), 1928-1939.
[18] Muntohar A. S., & Hantoro G. (2000). Influence of rice husk ash and lime on engineering properties of a clayey subgrade. Electronic Journal of Geotechnical Engineering, 5, 1-9.
[19] Ouhadi V. R., Amiri M., & Goodarzi A. R. (2012). The special potential of nano-clays for heavy metal contaminant retention in geo-environmental projects. Civil Engineering Infrastructures Journal, 45(6), 631-642. (In Persian)
[20] ASTM. (2016). American Society for Testing and Materials. Annual Book of ASTM
Standards, Pennsylvania.
[21] Ouhadi V. R., Deiranlou M. (2017). Development and Validation of modified barium choride method for CEC measurement and determination of accurate exchangeable calcium cation concentration in carbonated clayey soils. Modares Civil Engineering Journal, 17(3), 21-34. (In Persian)
[22] Eltantawy I. M., & Arnold P. W. (1973). Reappraisal of ethylene glycol mono‐ethyl ether (EGME) method for surface area estimations of clays. Journal of Soil Science, 24(2), 232-238.
[23] British Standard. BS 1377-3. (1990). Methods of test for Soils for civil engineering purposes- Part 3: Chemical and electro-chemical tests. British Standards Institution.
[24] Moore D. M., & Reynolds Jr, R. C. (1989). X-ray Diffraction and the Identification and Analysis of Clay Minerals. Oxford University Press (OUP).
[25] Hesse P. R. (1971). A textbook of soil chemical analysis (No. 631.41 H4).
[26] Ouhadi V. R., & Yong R. N. (2003). Experimental and theoretical evaluation of impact of clay microstructure on the quantitative mineral evaluation by XRD analysis. Applied Clay Science, 23(1-4), 141-148.
[27] Tessier A., Campbell P. G., & Bisson M. (1979). Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51(7), 844-851.
[28] Yong R. N., Galvez-Cloutier R., & Phadungchewit Y. (1993). Selective sequential extraction analysis of heavy-metal retention in soil. Canadian Geotechnical Journal, 30(5), 834-847.
[29] Railsback L. B. (2006). Some fundamentals of mineralogy and geochemistry. On-line book, quoted from: www. gly. uga. edu/railsback.
[30] Bohn H.L., McNeal B.L., & O'Connor G.A. (2001). Soil chemistry. John Wiley & Sons Inc.
[31] Wang S., Dong Y., He M., Chen L., & Yu X. (2009). Characterization of GMZ bentonite and its application in the adsorption of Pb (II) from aqueous solutions. Applied Clay Science, 43(2), 164-171.
[32] Fukue M., Nakamura T., & Kato Y. (1999). Cementation of soils due to calcium carbonate. Soils and Foundations, 39(6), 55-64.
[33] Papadopoulos P., & Rowell D. L. (1989). The reactions of copper and zinc with calcium carbonate surfaces. Journal of Soil Science, 40(1), 39-48.
[34] Yong R. N. (2000). Geoenvironmental engineering: Contaminated soils, pollutant fate, and mitigation. CRC press.
[35] Bendou S., & Amrani M. (2014). Effect of hydrochloric acid on the structural of sodic-bentonite clay. Journal of Minerals and Materials Characterization and Engineering.
[36] Rao S. M., Sridharan A., & Chandrakaran S. (1989). Influence of drying on the liquid limit behaviour of a marine clay. Geotechnique, 39(4), 715-719.
[37] Chen Z., Zhu H., Yan Z., Zhao L., Shen Y., & Misra A. (2016). Experimental study on physical properties of soft soil after high temperature exposure. Engineering Geology, 204, 14-22.
[38] Bray H. J., & Redfern S. A. T. (1999). Kinetics of dehydration of Ca-montmorillonite. Physics and Chemistry of Minerals, 26(7), 591-600.
[39] Koster van Groos A. F., & Guggenheim S. (1987). High-pressure differential thermal analysis (HP-DTA) of the dehydroxylation of Na-rich montmorillonite and K-exchanged montmorillonite. American Mineralogist, 72(11-12), 1170-1175.
[40] Emmerich K., Madsen F. T., & Kahr G. (1999). Dehydroxylation behavior of heat-treated and steam-treated homoionic cis-vacant montmorillonites. Clays and Clay Minerals, 47(5), 591-604.