تخمین ظرفیت باربری شمع‌ها تحت بار جانبی با استفاده از یک روش ترکیبی هوشمند جدید

نوع مقاله : پژوهشی اصیل (کامل)

نویسندگان
دانشکده‌ی مهندسی علوم زمین، دانشگاه صنعتی اراک
چکیده
پی‌های شمعی از سازه‌های مهم در حوزه‌ی ژئوتکنیک هستند که ممکن است تحت بارهای جانبی بزرگی قرارگیرند. تخمین ظرفیت باربری این‌گونه شمع‌ها با استفاده از روش‌های تجربی، همواره با خطا همراه بوده و نتیجه مدل‌سازی را از واقعیت دور می‌سازد. امروزه روش‌های هوشمند، قابلیت بالایی در امر پیش‌بینی و تخمین متغیر مجهول از خود نشان داده‌اند و می‌توانند جایگزین روش‌های تجربی و تحلیلی باشند. در این تحقیق سعی شد با ایجاد یک مدل ترکیبی هوشمند به نام رگرسیون بردار ارتباط بهینه شده با الگوریتم فراابتکاری کلونی زنبور عسل (RVR-ABC) به پیش‌بینی دقیق ظرفیت باربری جانبی شمع‌ها در خاک‌های رسی پرداخته‌ شود. در این روش از رگرسیون بردار ارتباط به عنوان مدل پیش‌بینی‌کننده و از الگوریتم فراابتکاری کلونی زنبور عسل به منظور بهینه‌سازی پارامترهای روش رگرسیون بردار ارتباط استفاده شده است. در این مدلسازی داده‌های به‌کار گرفته‌ شده، مربوط به یک مجموعه داده آزمایشگاهی ظرفیت باربری جانبی شمع در مقیاس کوچک می‌باشد. برای ارزیابی دقت مدلسازی از شاخص‌های مختلف آماری استفاده شد که نهایتا نتایج نشان داد که مدل ترکیبی RVR-ABC برای داده‌های آزمون با R2=0.975 و RMSE=0.001 ، از توانایی بالایی در پیش‌بینی ظرفیت باربری جانبی شمع‌ها برخوردار است. بعلاوه آنالیز حساسیت انجام شده در این مطالعه نشان داد که متغیرهای خروج از مرکز بار و طول مدفون شمع، در مقایسه با سایر پارامترها بااهمیت‌تر و تأثیرگذارترند.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Estimation of Lateral Load Capacity of Piles Using a New Intelligent Combination Method

نویسندگان English

H. Fattahi
F. Jiryaee
Arak University of Technology
چکیده English

Estimation of the load carrying capacity of pile foundation is one of the most sought after research areas in geotechnical engineering. Static equilibrium and other dynamic equations are used to predict the axial load capacity of pile. The prediction of lateral load capacity of piles, used in tall and offshore structures is more complex and requires solution of non-linear differential equations. The elastic analysis adopting Winkler soil model is not suitable for the non-linear soil behavior. Estimating the load capacity of such piles using experimental methods is always associated with error and makes the modeling result far from reality. Today, intelligent methods have shown a high capability in predicting and estimating unknown variables and can replace experimental and analytical methods. In this research, we tried to accurately predict the lateral load capacity of piles in clay soils by creating an intelligent hybrid model called optimized relevant vector regression with the artificial bee colony algorithm. The relevant vector regression is a probabilistic method based on Bayesian approach. The relevant vector regression does not need to predict the error/margin tradeoff parameter C, which can decrease the time and the kernel function, does not need to satisfy the Mercer condition. For those relevant vector regression advantages compared with the support vector regression approach, relevant vector regression model is successfully applied in regression prediction problems. In this method, relevant vector regression is used as a predictive model and artificial bee colony algorithm is used to optimize the parameters of relevant vector regression method. The artificial bee colony algorithm is a swarm based meta-heuristic algorithm for optimizing numerical problems. It was inspired by the intelligent foraging behavior of honey bees. The algorithm is specifically based on the model for the foraging behavior of honey bee colonies. The model consists of three essential components: employed and unemployed foraging bees, and food sources. The first two components, employed and unemployed foraging bees, search for rich food sources, which is the third component, close to their hive. The model also defines two leading modes of behavior which are necessary for self-organizing and collective intelligence: recruitment of foragers to rich food sources resulting in positive feedback and abandonment of poor sources by foragers causing negative feedback. In artificial bee colony, a colony of artificial forager bees (agents) search for rich artificial food sources (good solutions for a given problem). To apply artificial bee colony, the considered optimization problem is first converted to the problem of finding the best parameter vector which minimizes an objective function. Then, the artificial bees randomly discover a population of initial solution vectors and then iteratively improve them by employing the strategies: moving towards better solutions by means of a neighbor search mechanism while abandoning poor solutions.

In this modeling, the data used are related to a laboratory data set of small-scale pile load capacity. Various statistical indicators were used to evaluate the modeling accuracy. Finally, the results showed that the combined relevant vector regression with the artificial bee colony algorithm for test data with R2 = 0.975 and RMSE = 0.001, has a high ability to predict the lateral load capacity of spark plugs. In addition, the sensitivity analysis performed in this study showed that the variables of eccentricity of load and the length of pile are more important and effective compared to other parameters.

کلیدواژه‌ها English

Relevant vector regression
Artificial bee colony algorithm
Lateral load capacity
Sensitivity Analysis
1. Poulos HG, Davis EH. Pile foundation analysis and design1980.
2. Broms BBJJotsm, division f. Lateral resistance of piles in cohesive soils. 1964;90(2):27-63.
3. Brinch-Hansen JJGI, Bull. The ultimate resistance of rigid piles against transversal forces. 1961.
4. Koohestani VR, Bazargan Lari MJJOFCE. Prediction the ultimate bearing capacity of shallow foundations on the cohesionless soils using M5P model tree. 2016;27(2):99-110.
5. Pal M, Deswal SJJog, engineering g. Modeling pile capacity using support vector machines and generalized regression neural network. 2008;134(7):1021-4.
6. Shahin MAJCGJ. Intelligent computing for modeling axial capacity of pile foundations. 2010;47(2):230-43.
7. Liu YJ, Liang SH, Wu JW, Fu N, editors. Prediction method of vertical ultimate bearing capacity of single pile based on support vector machine. Advanced Materials Research; 2011: Trans Tech Publ.
8. Samui PJIJoGE. Prediction of pile bearing capacity using support vector machine. 2011;5(1):95-102.
9. Zhang MY, Liang L, Song HZ, Li Y, Peng WT, editors. Intelligent prediction for side friction of large-diameter and super-long steel pipe pile based on support vector machine. Applied Mechanics and Materials; 2012: Trans Tech Publ.
10. Muduli PK, Das SK, Das MRJIJoGE. Prediction of lateral load capacity of piles using extreme learning machine. 2013;7(4):388-94.
11. Kordjazi A, Nejad FP, Jaksa MJC, Geotechnics. Prediction of ultimate axial load-carrying capacity of piles using a support vector machine based on CPT data. 2014;55:91-102.
12. Chen W, Sarir P, Bui X-N, Nguyen H, Tahir M, Armaghani DJJEwC. Neuro-genetic, neuro-imperialism and genetic programing models in predicting ultimate bearing capacity of pile. 2020;36(3):1101-15.
13. Tipping MEJJomlr. Sparse Bayesian learning and the relevance vector machine. 2001;1(Jun):211-44.
14. Fang Q, Zhang D, Li Q, Wong LNYJT, Technology US. Effects of twin tunnels construction beneath existing shield-driven twin tunnels. 2015;45:128-37.
15. Fang Y, Su YJC, Geotechnics. On the use of the global sensitivity analysis in the reliability-based design: Insights from a tunnel support case. 2020;117:103280.
16. Tipping ME, editor The relevance vector machine. Advances in neural information processing systems; 2000.
17. Karaboga D, Akay BJAm, computation. A comparative study of artificial bee colony algorithm. 2009;214(1):108-32.
18. Babajani J, Mohammadreza T, Blue G, Abdollahi MJFMS. Forecasting Stock Prices In Tehran Stock Exchange Using Recurrent Neural Network Optimized by Artificial Bee Colony Algorithm. 2019;7(2):195-228.
19. Karaboga D, Ozturk CJAsc. A novel clustering approach: Artificial Bee Colony (ABC) algorithm. 2011;11(1):652-7.
20. Rao K, Suresh Kumar V, editors. Measured and predicted response of laterally loaded piles. Proceedings of the sixth international conference and exhibition on piling and deep foundations, India; 1996.