ارزیابی لرزه‌ای سازه‌های فولادی مجهز به میراگر تنظیم‌شده جرمی با تحلیل دینامیکی فزاینده (IDA)

نوع مقاله : پژوهشی اصیل (کامل)

نویسندگان
1 دانشکده عمران دانشگاه تهران
2 استاد، دانشکده عمران دانشگاه تهران
چکیده
امروزه کنترل غیرفعال با معرفی روش‌های تجهیز سازه‌ها به میراگر تنظیم‌شده‌ی جرمی ، منجر به افزایش ظرفیت سازه و اتلاف انرژی ناشی از تحریک شده است. در این مقاله از روش تحلیل دینامیکی فزاینده برای ارزیابی لرزه‌ای ساختمان‌های فولادی با ارتفاع متغیر 4، 8 و 12 طبقه استفاده شده است. منحنی‌های IDA و مشخصات آماری این منحنی‌ها (16% اول، 84% اول، میانه، میانگین) با گام‌های ثابت 0.1g برای این سازه‌ها در دو حالت کنترل‌نشده و در حالت کنترل غیرفعال (با TMD دارای درصد‌های جرمی 5/0% و 1% در بام) ارائه شده اند. در واقع رویکرد آماری برای ارائه‌ی پارامتر‌های فرکانس و میرایی میراگر، باعث تمایز این مقاله در زمینه‌ی کنترل غیر‌فعال با استفاده از میراگر جرمی تکی شده است. همچنین برای در نظر گرفتن بدترین حالت احتمالی برای سازه‌ها و کاهش عدم قطعیت‌ در پاسخ سازه تحت زلزله‌های مختلف، در بررسی منحنی‌های شکنندگی از تعداد ۲۲ رکورد زلزله‌های قوی FEMA-P695 استفاده شده است و برای پوشش عدم قطعیت در میراگر و سازه ناشی از تغییرات فرکانس و با توجه به مدل‌سازی غیرخطی سازه، براساس تحقیقات قبلی، خطای 10% در تنظیم فرکانس میراگر‌ها در نظر گرفته شده است. در ادامه، صحت‌سنجی رفتار خطی و غیرخطی مدل به کار رفته در این مقاله، به ترتیب با مقایسه‌ی نتایج مدل‌سازی در دو نرم‌افزار OpenSEES و SAP2000 و مدل‌سازی سازه‌ی 40 طبقه مجهز به TMD، تحت اثر زلزله‌ی Kobe با بیشینه شتاب 0.83g، بررسی شده است.

نتایج نشان می‌دهند برای درصد جرمی معادل 1% برایTMD در بام سازه‌ها و با در نظر گرفتن 16% اول همه زلزله‌ها، بیشترین درصد بهبود جابه‌جایی نسبی بام مربوط به سازه‌ی 12 طبقه و برابر با 54/2% خواهد بود. همچنین می‌توان برای کاهش تلاش محاسباتی، میانه‌ی زلزله‌ها را در نظر گرفت و به درصد بهبود برابر با 61/1% رسید که در مقایسه با روش اول اعداد قابل قبولی را ارائه می‌دهد. علاوه بر این، درصد کاهش متوسط جابه‌جایی در بام در سازه‌های 4، 8، و 12 طبقه و در حالت‌های کنترل‌نشده، کنترل شده با TMD با درصد‌های جرمی 5/0% و 1% گزارش شده و بیشترین درصد کاهش متوسط پاسخ بام، مربوط به سازه‌ی 12 طبقه مجهز به TMD با درصد جرمی 1%، برابر 47/3% است.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Seismic Evaluation of Steel Structures with TMD using Incremental Dynamic Analysis (IDA)

نویسندگان English

N. Mashhadi 1
S.M. Zahrai 2
1 University of Tehran
2 Professor, School of Civil Engineering, University of Tehran
چکیده English

Using a Tuned Mass Damper (TMD) in a structure, is a reasonable solution for absorbing its movements caused by external forces. However, when designing a TMD on the grounds of passive control, it is a challenging task as this device can be tuned once and for a specified range of frequency. Employing more than one TMD is another option; although this will lead to higher cost and might increase the base shear of the structure. In this paper, to provide a wide range of frequency and mode shapes in the analysis, nine types of steel structures are designed, having the story number of 4, 8, and 12, respectively, and then subjected to 22 acceleration records of FEMA-P695; These records, are a suitable choice for generating statistical results as they provide a wide range of magnitudes. Three of these structures are uncontrolled, and the remaining are equipped with a TMD on their roof, being of 0.5% and 1% mass ratio and considering the first mode frequency for the TMD design. The design of the TMDs is carried out via Den Hartog's formula.

Using incremental dynamic analysis (IDA), fragility curves are created with constant 0.1g steps for PGA intensity measure. In addition, for considering the uncertainties in the performance of the TMD and the structure due to the changes in frequency, a 10% error is applied for the first mode frequency in the nonlinear design of the structures. The maximum drift ratio is used as a damage measure due to its simplicity and comprehensive coverage. Multiple earthquake recordings and their statistical characteristics, such as mean, median, 16%, and 84% of the recorded amplitudes and their more robust components, are utilized to examine the IDA curves to eliminate any ambiguity about structure response. This paper presents its novelty by applying a statistical method for choosing the mass ratio of TMD, considering the possible real-world quantities for this parameter and a wide range of frequencies for the excitations; therefore, limiting the TMD stroke. Subsequently, verifying the linear and non-linear behavior of the model used in this paper is carried out by modeling a 40-story steel structure equipped with a TMD situated on its roof and tuned based on its first mode under the Kobe Earthquake. Furthermore, the displacement response of the 4, 8, and 12-story structures, being equipped with a single TMD of 0.5% and 1% mass ratio, respectively, are compared to their uncontrolled state by exposing them to the Landers earthquake.

Results show that using TMD reduces the maximum drift ratio of the structures. Considering the first 16% of the acceleration records, as expected, a 12-story steel structure equipped with a TMD of 1% mass ratio on the roof, presents the best results of maximum drift improvement ratio of 2.54%. Moreover, for reducing computational effort, another alternative is applying a limited number of earthquakes to the structure. By using the median for the duration and PGAs of all FEMA-P695 data to estimate this earthquake record, the maximum drift improvement ratio is then 1.61% for the twelve-story structure resulting in decent numbers compared to the first method. Moreover, all types of the 4, 8, and 12-story structures (uncontrolled, controlled with a TMD of 0.5% mass ratio, and controlled with a TMD of 1% mass ratio) were subjected to the Kobe earthquake, and their average roof displacements were compared. Among these three types of structures, the 12-story structure was recorded to have the highest rate of maximum roof displacement compared to its uncontrolled state, being 3.47%.

کلیدواژه‌ها English

passive control
Tuned Mass Damper (TMD)
incremental dynamic analysis (IDA)
Steel Structures
[1] Ghobarah A. 2001 Performance-based design in earthquake engineering: state of development. Engineering Structures. 23(8), 878-884.

[2] Hartog J. 1956 Mechanical vibrations. 4th ed. New York: McGraw-Hill.
[3] Warburton G. 1982 Optimum absorber parameters for various combinations of response and excitation parameters. Earthquake Engineering & Structural Dynamics. 10(3), 381-401.
[4] Chang C. 1999 Mass dampers and their optimal designs for building vibration control. Engineering Structures. 21(5), 454-463.
[5] Bakre S. & Jangid R. 2007 Optimum parameters of tuned mass damper for damped main system. Structural Control and Health Monitoring. 14(3), 448-470.
[6] Sgobba S. & Marano G. 2010 Optimum design of linear tuned mass dampers for structures with nonlinear behavior. Mechanical Systems and Signal Processing. 24(6), 1739-1755.
[7] Farshidianfar A. & Soheili S. 2013 Ant colony optimization of tuned mass dampers for earthquake oscillations of high-rise structures including soil-structure interaction. Soil Dynamics and Earthquake Engineering. 51, 14-22.
[8] Lavan O. 2017 Multi-objective optimal design of tuned mass dampers Structural Control and Health Monitoring. 24(11).
[9] Gebrail B., Sinan M. & Xin-She Y. 2018 A novel bat algorithm based optimum tuning of mass dampers for improving the seismic safety of structures Journal of Engineering Structures. 89–98.
[10] Khatibinia M., Gholami H. & Kamgar R. 2018 Optimal design of tuned mass dampers subjected to continuous stationary critical excitation International Journal of Dynamics and Control. 6(3), 1094–104.
[11] Sinan M. & Gebrail B. 2019 Optimum design of multiple positioned tuned mass dampers for structures constrained with axial force capacity. Journal of Structural Design of Tall and Special Buildings. 28(5).
[12] Kamgar R., Khatibinia M. & Khatibinia M. 2019 Optimization criteria for design of tuned mass dampers including soil–structure interaction effect. International Journal of Optimization in Civil Engineering. 9(2), 213-232.
[13] Liu Y., Wanga K. & Mercanb O., Chena H. & Tana P. 2020 Experimental and numerical studies on the optimal design of tuned mass dampers for vibration control of high-rise structures, Journal of Engineering Structures.
[14] Akhlagh pasand A., Fatollah pour A., & Zahrai S. 2020 Comparing performance of TMD and MTMD vertically distributed in height for multi-modal seismic control of tall buildings. Amirkabir Journal of Civil Engineering. 52(10), 2563-2582.
[15] Nakai T., Kurino H., Yaguchi T. & Kano N. 2019 Control effect of large tuned mass damper used for seismic retrofitting of existing high-rise building. Japan Architectural review.
[16] Batou A. & Adhikari S. 2019 Optimal parameters of viscoelastic tuned-mass dampers. Journal of Sound and Vibration. 17– 28.
[17] Ramezani M. & Zahrai S.M. 2016 Optimal Parameters of Tuned Mass Damper for Tall Buildings by Neural Networks. Modares Civil Engineering Journal. 16(4), 109-121. (In Persian)
[18] Ramezani M., Bathaei A. & Zahrai S.M. 2017 Designing fuzzy systems for optimal parameters of TMDs to reduce seismic response of tall buildings. Smart Structures and Systems. 20(1),61-74.
[19] Khazaei M., Vahdani R. & Kheyroddin A. 2020 Optimal Location of Multiple Tuned Mass Dampers in Regular and Irregular Tall Steel Buildings Plan. Shock and Vibration.
[20] Ramezani M., Bathaei A. & Zahrai S.M. 2019 Comparing fuzzy type-1 and -2 in semi-active control with TMD considering uncertainties. Smart Structures and Systems. 23(2), 155-171.
[21] Liu Y., Wang K., Mercan O., Chen H. & Tan P. 2020 Experimental and numerical studies on the optimal design of tuned mass dampers for vibration control of high-rise structures. Engineering Structures. 211, 110486.
[22] Chaudhary A., Nandanwar Y. & Mungale N. 2021 A review on optimization of design of tuned mass dampers. Journal of Physics: Conference Series.1913(1), 012003.
[23] Bertero VV. 1977 Strength and deformation capacities of buildings under extreme environments. Structural Engineering and Structural Mechanics, Pister KS (ed.). Prentice-Hall: Englewood Cliffs, NJ, 211–215.
[24] Luco N. & Cornell C. 2007 Structure-Specific Scalar Intensity Measures for Near-Source and Ordinary Earthquake Ground Motions. Earthquake Spectra. 23(2), 357-392.