بررسی آزمایشگاهی تاثیر هندسه و تعداد صفحه بر ظرفیت باربری کششی شمع های مارپیچ

نوع مقاله : پژوهشی اصیل (کامل)

نویسندگان
دانشگاه فردوسی مشهد
چکیده
هم اکنون، شمع‌های مارپیچ به عنوان مهار کششی در صنعت استفاده شده و دارای کاربرد‌های متنوعی از جمله تکیه‌گاه سازه‌ها، خطوط انتقال برق، مهار لوله های مستغرق در آب و غیره است. این شمع‌ها دارای مزایایی نظیر نصب آسان و سریع، عدم نیاز به حفاری و آلودگی زیست محیطی و غیره است. پژوهش حاضر به بررسی ظرفیت باربری کششی شمع مارپیچ در خاک ماسه ای می‌پردازد. هدف از انجام این پژوهش، بررسی اثر هندسه و تعداد صفحات بر ظرفیت باربری کششی شمع مارپیچ در مقیاس کوچک آزمایشگاهی بر روی خاک ماسه ای است. بدین منظور، تعداد یک تا سه صفحه و با هندسه های مختلف مربعی، دایروی و شش ضلعی درنظرگرفته شد. اندازه صفحه ها طوری انتخاب شد که مساحت تمام صفحه ها با هندسه‌های مختلف یکسان باشد. مطابق نتایج بدست آمده، مشاهده شد هندسه صفحه نقش بسزایی در ظرفیت باربری کششی شمع دارد. با تعریف ضریب شکل و شاخص قراردادن ظرفیت باربری شمع با صفحه دایروی، مشخص شد شمع با صفحه شش ضلعی بیشترین و دایره کمترین ظرفیت باربری را بدست می دهد. همچنین، با مقایسه نتایج آزمایشگاهی و روش‌های مختلف تحلیلی موجود در ادبیات فنی، مشخص شد مکانیزم ظرفیت باربری در شمع های چند صفحه ای، بصورت استوانه برشی است. بر اساس نتایج آزمایشگاهی، افزایش تعداد صفحات باربر همواره موجب افزایش ظرفیت باربری شمع مارپیچ نمی شود و بستگی به شکل صفحات دارد. این نتیجه بر اساس روش تحلیلی نیز تایید می شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Experimental Lnvestigation of Geometry and Number of Helices on the Tensile Bearing Capacity of Helical Piles

نویسندگان English

F. Gharib
E. Seyedi Hosseininia
Ferdowsi University of Mashhad
چکیده English

Nowadays, helical piles as tensile anchors are widely used in industry. A helical pile is consisted of one or several bearing plates which are attached to the central shaft. A helical pile is installed in the ground by applying a torque on the shaft top together with a thrust force. The main advantages are the ease and rapidity in the installation, instant loading after the installation and no use of soil drilling. In this research paper, the tensile bearing capacity of helical piles in sandy soils is investigated experimentally in small scale. In most cases, the geometry of the bearing places is circular. Considering other geometries such as square or hexagonal may reduce the materials used in the pile fabrication and also, the effect of bearing capacity is not known in the engineering practice. The main aims of this study are to find the effect of the plate geometry as well as the number of bearing plates on the bearing capacity. To do so, helical piles were made up of steel with one, two and three plates with circular, square and hexagonal shapes. The cross section area of all the plates are considered the same. The piles were installed in a reservoir filled with dry medium-dense Firoozkooh sand by rotating manually the pile top. The pile top was drawn vertically under a uplift force. The loading process was performed according to quick method explained in ASTM D3689 standard. Having obtained the variation of force against the pile displacement, the bearing capacity of the pile were assessed. Four different methods were considered here to assess the average bearing capacity by considering different criteria mentioned in the technical literature. As the first step to find the best match theatrical formula, the pile bearing capacity with single circular plate was studied. By investigating several formulas, it is found out that the formula presented by Veesaert and Clemence (1977) matches well with the experiment and thus, this formula was used hereafter in all the analytical investigations. By comparing the experimental results with theoretical formulations, it can be said that the shear cylinder is the dominant mechanism which was observed in all the multi-plate piles. The results also show that the geometry of the plates clearly influences on the tensile bearing capacity. The piles with hexagonal and circular plates have the greatest and the lowest capacity, respectively. Based on the results, a shape factor is defined for the pile with hexagonal plates. The shape factor of the piles with square plate is obtained 1.20 which is consistent with other previous studies. For the pile with hexagonal plate, the shape factor is assessed as 1.34. It is also shown that this bearing capacity is correspondent to an equivalent circumferential circular plate. By using the values of the shape factors (for both square and hexagonal) and the analytical method, the bearing capacity of the piles with two three plates were assessed. A good match is observed between the results of the experiment and analytical method. Again, the results implicitly confirm the dominancy of cylindrical shear mechanism. Results also show that the increase in the number of plates does not necessarily increase the bearing capacity, but it depends on the plate geometry. The reason can be explained by the differences in the perimeter of the helices and accordingly, the effective soil weight which is considered as the generated wedge against the uplift. This can be justified by the results of analytical methods.

کلیدواژه‌ها English

Tensile bearing capacity
helical pile
plate geometry
Number
Experimental Study
[1] Lutenegger AJ. Historical development of iron screw-pile foundations: 1836–1900. The International Journal for the History of Engineering & Technology. 2011;81(1):108-28.
[2] Seyedi Hosseininia E, inventor; Ferdowsi University of Mashhad, assignee. Helical pile. Iran2014.(In Persian)
[3] Dickin Edward A. Uplift behavior of horizontal anchor plates in sand. Journal of Geotechnical Engineering. 1988;114(11):1300-17.
[4] Fateh AMA, Eslami A, Fahimifar A. Direct CPT and CPTu methods for determining bearing capacity of helical piles. Marine Georesources & Geotechnology. 2017;35(2):193-207.
[5] Gavin K, Doherty P, Tolooiyan A. Field investigation of the axial resistance of helical piles in dense sand. Canadian Geotechnical Journal. 2014;51(11):1343-54.
[6] Hanna A, Ayadat T, Sabry M. Pullout resistance of single vertical shallow helical and plate anchors in sand. Geotechnical and Geological Engineering. 2007;25(5).
[7] Mitsch MP, Clemence SP. Uplift capacity of helix anchors in sand. American Society of Civil Engineers (ASCE); 1985. p. 26-47.
[8] Liu J, Liu M, Zhu Z. Sand deformation around an uplift plate anchor. Journal of Geotechnical and Geoenvironmental Engineering. 2012;138(6):728-37.
[9] Lutenegger AJ, editor Behavior of multi-helix screw anchors in sand. Proceedings of the 14th Pan-American Conference on Soil Mechanics and Geotechnical Engineering, Toronto, Ont[CD ROM]; 2011.
[10] Sakr M. Installation and performance characteristics of high capacity helical piles in cohesionless soils. DFI Journal - The Journal of the Deep Foundations Institute. 2011;5(1):39-57.
[11] Roy A, Bhattacharya P. Diameter effect on uplift capacity of horizontal circular anchor embedded in sand. International Journal of Geotechnical Engineering. 2018.
[12] Tsuha C, Schiavon JA, Thorel L, editors. Evaluation of the breakout factor for helical anchors in sand by centrifuge testing. XVI Pan-American Conference on Soil Mechanics and Geotechnical Engineering (XVI PCSMGE) Geotechnical Engineering in the XXI Century: Lessons learned and future challenges; 2019: IOS Press.
[13] Tsuha CdHC, Aoki N, Rault G, Thorel L, Garnier J. Evaluation of the efficiencies of helical anchor plates in sand by centrifuge model tests. Canadian Geotechnical Journal. 2012;49(9):1102-14.
[14] Giampa JR, Bradshaw AS, Schneider JA. Influence of dilation angle on drained shallow circular anchor uplift capacity. International Journal of Geomechanics. 2017;17(2).
[15] Mittal S, Mukherjee S. Vertical uplift capacity of a group of helical screw anchors in sand. Indian Geotechnical Journal. 2013;43(3):238-50.
[16] Niroumand H, Kassim KA. Uplift response of irregular-shaped anchor in cohesionless soil. Arabian Journal for Science and Engineering. 2014;39(5):3511-24.
[17] Morais TdSO, Tsuha CdHC. A new experimental procedure to investigate the torque correlation factor of helical anchors. Electronic Journal of Geotechnical Engineering. 2014;19:3851-64.
[18] Khazaei J, Eslami A. Behavior of helical piles–as a geoenvironmental choice–by frustum confining vessel. Advances in Science and Technology Research Journal. 2016;10(31):8-22.
[19] Fateh AMA, Eslami A, Fahimifar A. A study of the axial load behaviour of helical piles in sand by frustum confining vessel. International Journal of Physical Modelling in Geotechnics. 2018;18(4):175-90.
[20] Sharma M, Samanta M, Sarkar S. Laboratory study on pullout capacity of helical soil nail in cohesionless soil. Canadian Geotechnical Journal. 2017;54(10):1482-95.
[21] Motamedinia H, Hataf N, Habibagahi G. A study on failure surface of helical anchors in sand by piv/dic technique. International Journal of Civil Engineering. 2019;17(12):1813-27.
[22] Meyerhof G, Adams J. The ultimate uplift capacity of foundations. Canadian geotechnical journal. 1968;5(4):225-44.
[23] Murray E, Geddes JD. Uplift of anchor plates in sand. Journal of Geotechnical Engineering. 1987;113(3):202-15.
[24] Chattopadhyay B, Pise P. Breakout resistance of horizontal anchors in sand. Soils and foundations. 1986;26(4):16-22.
[25] Ghaly A, Hanna A. Ultimate pullout resistance of single vertical anchors. Canadian Geotechnical Journal. 1994;31(5):661-72.
[26] Ghaly A, Hanna A, Hanna M. Uplift behavior of screw anchors in sand. I: dry sand. Journal of Geotechnical Engineering. 1991;117(5):773-93.
[27] Ilamparuthi K, Dickin EA, Muthukrisnaiah K. Experimental investigation of the uplift behaviour of circular plate anchors embedded in sand. Canadian Geotechnical Journal. 2002;39(3):648-64.
[28] Lee KF, Davidson JF, Akroyd J, Kraft M. Lifting a buried object: Reverse hopper theory. Chemical Engineering Science. 2014;105:198-207.