مطالعه رفتار لرزه ای قاب بتن آرمه در معرض حمله کلرایدی با رویکرد احتمالاتی در بستر زمان

نوع مقاله : پژوهشی اصیل (کامل)

نویسندگان
1 دانشجوی دوره دکتری دانشگاه کردستان
2 عضو هیات علمی دانشگاه کردستان
چکیده
حمله کلرایدی یکی از مخرب‌ترین پدیده‌هایی است که در سازه‌های بتنی اثراث نامطلوبی بر بتن و فولاد به جای می‌گذارد. خوردگی میلگردها از یک سو و آسیب بتن از سوی دیگر می‌تواند بطور چشمگیری منجر به کاهش ظرفیت لرزه‌ای سازه‌های بتنی در بستر زمان گردد. با توجه به این موضوع، مدلسازی زوال مقاطع بتن آرمه پیش از انجام تحلیل‌های غیرخطی به منظور ارزیابی رفتار لرزه‌ای آنها ضرورت دارد. در این راستا نشریه 360 توصیه می‌نماید که برای در نظر گرفتن اثرات خوردگی مقاطع بتن آرمه، روابط ممان-انحناء مورد استفاده در تعریف مفاصل پلاستیک به کمک یک عدد ثابت تحت عنوان ضریب آگاهی اصلاح گردد. با توجه به وابستگی فرایند زوال سازه‌های بتنی تحت حملات شیمیایی به زمان و همچنین وجود عدم قطعیت‌های مختلف در مدل‌سازی این پدیده، به نظر می‌رسد که لحاظ نمودن اثرات خوردگی تنها با یک ضریب ثابت کافی نبوده و می‌بایست پژوهش‌های بیشتری در این خصوص انجام گردد. در این راستا در مقاله حاضر رفتار لرزه‌ای یک قاب خمشی بتن آرمه در عمر مفید 50 ساله تحت حمله کلرایدی بر وجوه خارجی ستونها مورد مطالعه قرار گرفت. بدین منظور در ابتدا انتشار کلراید با توجه به قانون فایک مدل‌سازی و سپس میزان آسیب در میلگرد‌ها و بتن به کمک نرم افزار متلب محاسبه گردید. به منظور افزایش دقت مدل‌سازی، از یک چهارچوب احتمالاتی مبتنی بر شبیه‌سازی مونت کارلو جهت درنظر گرفتن عدم قطعیت‌ها استفاده شد. در گام بعد، منحنی های ممان-انحناء مقاطع با استفاده از نتایج مدل‌سازی زوال استخراج گردید و با روابط توصیه شده در نشریه 360 مقایسه شد. در پایان رفتار لرزه‌ای قاب خمشی مذکور به کمک تحلیل غیرخطی استاتیکی (پوش آور) در دو حالت استفاده از نتایج ممان-انحناء بدست آمده از پژوهش حاضر و نشریه 360 مورد مطالعه قرار گرفت.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Probabilistic-based Investigation of Reinforced Concrete Frame Seismic Behavior Under Chloride Attack

نویسندگان English

S. Rezaie 1
M. khalighi 2
J. Bahrami 2
Z. Mirzaei 2
1 Uni. of Kurdistan
2 Ass. Prof.
چکیده English

Chloride attack is one of the most destructive phenomena that has an adverse effect on concrete and steel materials in reinforced concrete structures. Corrosion of rebars and damage of concrete can significantly reduce the seismic capacity of these structures over time. Accordingly, it is necessary to model the deterioration of reinforced concrete sections before performing nonlinear analysis to evaluate their seismic behavior. In this regard, Instruction for Seismic Rehabilitation of Existing Buildings (code No. 360) recommends that in order to consider the corrosion effects of reinforced concrete sections, the moment-curvature relationships used in the definition of plastic joints are corrected by a fixed number called the knowledge factor. Due to the fact that the deterioration process of concrete structures under chemical attacks is time-dependent and also there are various uncertainties in modeling this phenomenon, it seems that considering the effects of corrosion with only one constant factor, is not enough and in this regard, more research needs to be done. In this regard, in the present paper, the seismic behavior of a reinforced concrete flexural frame with a lifetime of 50 years under chloride attack on the external aspects of the columns was studied. For this purpose, in the first step, chloride diffusion is modeled according to Fick's law and then the measure of damage in rebars and concrete was calculated using MATLAB software. In order to increase the modeling accuracy, a probabilistic framework based on Monte Carlo simulation was used to consider the uncertainties. In the next step, Moment-curvature curves of the sections were extracted using the results of deterioration modeling and were compared with those recommended by code No. 360. After that, the seismic behavior of the flexural frame was studied using static nonlinear analysis (Pushover) based on the moment-curvature results obtained from the present study and the recommendations of Code No. 360. A summary of the results obtained in this study can be expressed as follows: Corrosion due to chemical attacks can change the behavior of reinforced concrete members over time from deformation-control to force-control. For this reason, the type of failure mechanism of these structures changes from ductile to brittle. In correcting the moment-curvature diagrams of reinforced concrete flexural frame columns using the knowledge factor of Code No. 360, it is necessary to pay attention to the actual behavior of the member subject to corrosion. Using the method used in this research, it is possible to predict the actual behavior of concrete sections under the chloride attacks during the lifetime of the structure based on the modeling results of cross-sectional deterioration. For the studied moment frame, it was concluded that in the first half of the structure life, the use of a knowledge factor 0.75 to modify the curvature, is appropriate to correct the behavior of column sections subject to corrosion. But in the second half of the life of the structure, it is better to correct the moment-curvature relationship by applying the knowledge factor to the moment. In this study, the diameter of the rebars, ductility of steel, and the compressive strength of concrete were considered as indicators of damage due to chloride attacks. Based on statistical calculations, it was concluded that the determination of the reduction in diameter of rebars over time has a higher uncertainty than the other two parameters. Therefore, further research is needed to provide a suitable solution to more accurately estimate this parameter.

کلیدواژه‌ها English

Chloride Attack
Monte Carlo
pushover analysis
Moment-curvature relations
Code No. 360
knowledge factor
[1] Mehrer, H. 2007. Diffusion in solids: fundamentals, methods, materials, diffusion-controlled processes (Vol. 155). Springer Science & Business Media.
[2] Euro-International Committee for Concrete, Comité euro-international du béton. 1992. Durable concrete structures: design guide (Vol. 183). Thomas Telford.
[3] Gang, S. H. 2012. Report Card for America's Infrastructure. Construction Engineering and Management, 13(6), 63-65.
[4] Gonzalez, J. A., Andrade, C., Alonso, C., Feliu, S. 1995. Comparison of rates of general corrosion and maximum pitting penetration on concrete embedded steel reinforcement. Cement and concrete research, 25(2), 257-264.
[5] Almusallam, A. A. 2001. Effect of degree of corrosion on the properties of reinforcing steel bars. Construction and building materials, 15(8), 361-368.
[6] Vidal, T., Castel, A., François, R. 2004. Analyzing crack width to predict corrosion in reinforced concrete. Cement and concrete research, 34(1), 165-174.
[7] Bhargava, K., Ghosh, A. K., Mori, Y., Ramanujam, S. 2007. Corrosion-induced bond strength degradation in reinforced concrete—Analytical and empirical models. Nuclear Engineering and Design, 237(11), 1140-1157.
[8] Biondini, F., Frangopol, D. M. 2008. Probabilistic limit analysis and lifetime prediction of concrete structures. Structure and Infrastructure Engineering, 4(5), 399-412.
[9] Biondini, F., Frangopol, D. (Eds.). 2008. Life-Cycle Civil Engineering: Proceedings of the International Symposium on Life-Cycle Civil Engineering, IALCCE'08, held in Varenna, Lake Como, Italy on June 11-14, 2008. CRC Press.
[10] Estes, A. C., Frangopol, D. M. 2001. Bridge lifetime system reliability under multiple limit states. Journal of bridge engineering, 6(6), 523-528.
[11] Val, D. V., Stewart, M. G., Melchers, R. E. 1998. Effect of reinforcement corrosion on reliability of highway bridges. Engineering structures, 20(11), 1010-1019.
[12] Akiyama, M., Frangopol, D. M., Matsuzaki, H. 2011. Life‐cycle reliability of RC bridge piers under seismic and airborne chloride hazards. Earthquake Engineering & Structural Dynamics, 40(15), 1671-1687.
[13] Akiyama, M., Frangopol, D. M., Suzuki, M. 2012. Integration of the effects of airborne chlorides into reliability-based durability design of reinforced concrete structures in a marine environment. Structure and Infrastructure Engineering, 8(2), 125-134.
[14] Akiyama, M., Matsuzaki, H., Dang, H. T., Suzuki, M. 2012. Reliability-based capacity design for reinforced concrete bridge structures. Structure and Infrastructure Engineering, 8(12), 1096-1107.
[15] Alipour, A., Shafei, B., Shinozuka, M. S. 2013. Capacity loss evaluation of reinforced concrete bridges located in extreme chloride-laden environments. Structure and Infrastructure Engineering, 9(1), 8-27.
[16] Ghosh, J., Padgett, J.E. 2009. Multi-hazards considerations of seismic and aging threats to bridges. Proceedings of the SEI/ASCE Structures Congress 2009, Austin, TX, USA, April 30 – May 2.
[17] Ghosh, J., Padgett, J. E. 2010. Aging considerations in the development of time-dependent seismic fragility curves. Journal of Structural Engineering, 136(12), 1497-1511.
[18] Biondini, F., Bontempi, F., Frangopol, D. M., Malerba, P. G. 2004. Cellular automata approach to durability analysis of concrete structures in aggressive environments. Journal of Structural Engineering, 130(11), 1724-1737.
[19] Biondini, F., & Frangopol, D. M. 2016. Life-cycle performance of deteriorating structural systems under uncertainty. Journal of Structural Engineering, 142(9), F4016001.
[20] Shayanfar, M. A., Ghanooni Bagha, M. 2012. A study of corrosion effects of reinforcements on the capacity of bridge piers via the nonlinear finite element method. Sharif Journal of Civil Engineering, (3), 59-68. (In Persian)
[21] Shayanfar, M. A., Savoj, H. R., Ghanooni-Bagha, M., Khodam, A. 2018. The effects of corrosion on seismic performance of reinforced concrete moment frames. Journal of Structural and Construction Engineering, 5(2), 146-159. (In Persian)
[22] Sadrinejad, I., Ranjbar, M. M., & Madandoust, R. 2018. Influence of hybrid fibers on serviceability of RC beams under loading and steel corrosion. Construction and Building Materials, 184, 502-514.
[23] Firouzi, A., Abdolhosseini, M., & Ayazian, R. 2020. Service life prediction of corrosion-affected reinforced concrete columns based on time-dependent reliability analysis. Engineering Failure Analysis, 117, 104944.
[24] Karimipour, A., & Farhangi, V. 2021. Effect of EBR-and EBROG-GFRP laminate on the structural performance of corroded reinforced concrete columns subjected to a hysteresis load. Structures, Vol. 34, pp. 1525-1544.
[25] Reshvanlou, B. A., Nasserasadi, K., & Ahmadi, J. 2021. Modified Time-Dependent Model for Flexural Capacity Assessment of Corroded RC Elements. KSCE Journal of Civil Engineering, 25(10), 3897-3910.
[26] Management and Planning Organization. 2007. Instruction for Seismic Rehabilitation of Existing Buildings (Publication No. 360). Islamic Republic of Iran.
[27] Rahgozar, N., Pouraminian, M., & Rahgozar, N. 2021. Reliability-based seismic assessment of controlled rocking steel cores. Journal of Building Engineering, 44, 102623.
[28] Bertolini, L., Elsener, B., Pedeferri, P., Polder, R. B. 2004. Electrochemical techniques. Corrosion of Steel in Concrete, Wiley-VCH, Weinheim, Germany, 345-374.
[29] Glicksman, M. E. 2000. Diffusion in solids: field theory, solid-state principles, and applications. New York, 54-56.
[30] Titi, A., Biondini, F. 2016. On the accuracy of diffusion models for life-cycle assessment of concrete structures. Structure and Infrastructure Engineering, 12(9), 1202-1215.
[31] fib (International Federation for Structural Concrete). 2006. Model code for service life design. Tech. rep. fib bulletin 34.
[32] Bertolini, L., Elsener, B., Pedeferri, P., Redaelli, E., Polder, R. B. 2013. Corrosion of steel in concrete: prevention, diagnosis, repair. John Wiley & Sons.
[33] Biondini, F., Camnasio, E., Palermo, A. 2014. Lifetime seismic performance of concrete bridges exposed to corrosion. Structure and Infrastructure Engineering, 10(7), 880-900.
[34] Biondini, F., Bontempi, F., Frangopol, D. M., Malerba, P. G. 2006. Probabilistic service life assessment and maintenance planning of concrete structures. Journal of Structural Engineering, 132(5), 810-825.
[35] Coronelli, D., Gambarova, P. 2004. Structural assessment of corroded reinforced concrete beams: modeling guidelines. Journal of structural engineering, 130(8), 1214-1224.
[36] Stewart, M. G. 2009. Mechanical behavior of pitting corrosion of flexural and shear reinforcement and its effect on structural reliability of corroding RC beams. Structural safety, 31(1), 19-30.
[37] Biondini, F. 2011. Cellular automata simulation of damage processes in concrete structures.
[38] Biondini, F., Vergani, M. 2012. Damage modeling and nonlinear analysis of concrete bridges under corrosion. In Sixth international conference of bridge maintenance, safety and management (IABMAS 2012) (pp. 949-957). CRC Press/Balkema, Taylor and Francis Group.
[39] Kwak, H. G., Kim, S. P. 2002. Nonlinear analysis of RC beams based on moment–curvature relation. Computers & structures, 80(7-8), 615-628.
[40] CEN-EN 1992-1-1 (2004). Eurocode 2: design of concrete structures-part 1–1: general rules and rules for buildings. British Standard Institution, London.
[41] ASCE. 2007. Seismic rehabilitation of existing buildings. American Society of Civil Engineers. Standard ASCE/SEI 41-06.