بررسی دوام وارفتگی خاکهای مارنی در شرایط اسیدی و بازی از منظر ریزساختاری

نوع مقاله : پژوهشی اصیل (کامل)

نویسندگان
1 دانشیار گروه مهندسی عمران، دانشگاه هرمزگان
2 دانشجوی کارشناسی ارشد مهندسی عمران، دانشگاه هرمزگان
چکیده
رفتار مهندسی و دوام خاک­های مارنی در شرایط خشک و مرطوب کاملا متفاوت است و سبب ایجاد چالش در پروژ­ه­های عمرانی می­شود. خاک­های مارنی به طور گسترده­ای در نقاط مختلف جهان قابل مشاهده­اند. از طرفی بسیاری از صنایع تولید کننده آلاینده بر روی خاک­های مارنی قرار دارند و معمولا آلودگی ناشی از این صنایع سبب تغییر pH و ایجاد شرایط اسیدی و قلیایی در خاک مارن می­شود. بر این اساس هدف این پژوهش مطالعه تاثیر pH اولیه، بر دوام خاک­های مارنی از منظر ریزساختاری است. در این راستا، با اضافه نمودن اسید هیدروکلریک (HCl) و قلیای سدیم هیدروکسید (NaOH) با غلظت 1مولار، خاک­های مارنی با pHهای اولیه متفاوت تهیه شد. تغییرات شاخص دوام وارفتگی به­وسیله تهیه تصاویر SEM، آنالیز XRF، آزمایش دوام و جذب آب و مقاومت فشاری محصور نشده مورد بررسی قرار گرفت. از مهم­ترین نتایج مقاله حاضر دوام و پایداری خاک­های مارنی با 4≥pH اولیه در مقابل رطوبت است. بر اساس نتایج تصاویر SEM و آنالیز XRF تشکیل منیزیم کلرید در ساختار پالی­گورسکایت و سپیولایت موجب پایداری خاک­های مارنی با 4≥pH اولیه شده است. همچنین مقاومت اولیه خاک مارن بر دوام وارفتگی تأثیری ندارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Investigating the Durability of Marl Soils in Acidic and Alkaline Conditions from a Microstructural Point of View

نویسندگان English

M. amiri 1
R. Salehian 2
1 Associate professor, University of Hormozgan, Faculty of Engineering, Bandar Abbas, Iran
2 University of Hormozgan, Faculty of Engineering.
چکیده English



Abstract:

Background and Objective: Marl soils with their complex behavior can be found in different parts of the world, such as Spain, the United States, Italy, Britain, France, Canada, and the Gulf states. In Iran, also, Marls can be located in abundance in the marginal zones of the East Azerbaijan Province, Persian Gulf, Hormozgan, and Qeshm Island. Marl soils' engineering behavior and durability in dry and wet conditions are entirely different and cause challenges in construction projects. Marl-like soils are widely observed in different parts of the world. The behavioral characteristics of marl typically depend on the distribution and size of the particles and their plastic properties. Under dry conditions, the deformation of marl soil is due to the breakdown of particles and creating a new structure. However, when this type of soil is exposed to moisture, the aggregate bond will degrade and cause swelling in the soil and, at the same time, a change in its hardness and strength on the other hand, many polluting industries are located on marl soils. Usually, the pollution caused by these industries changes the pH and creates acidic and alkaline conditions in marl soils. Therefore, this study aims to study the effect of initial pH on the durability of marl soils from a microstructural perspective.

Materials and methods: In this regard, marl soils with different initial pHs were prepared by adding 1 M sodium alkali hydroxide (NaOH) and hydrochloric acid (HCl). Changes in geotechnical and geoenvironmental characteristics were investigated by macrostructural experiments (Atterberg Limits, permeability, and unconfined compressive strength, durability, and water absorption testing) as well as microstructural experiments (Laser diffraction particle size analysis (PSA), X-ray diffraction (XRD), X-ray fluorescence (XRF), carbonate percentage determination and scanning electron microscopy (SEM) images) and the effect of initial soil pH change on marl engineering behavior was investigated.

Results and discussions: One of the most important results of the present paper is the durability and stability of marl soils with initial pH ≤4 against moisture. Based on the SEM images and XRF analysis results, the formation of magnesium chloride in the structure of palygorskite and sepiolite has caused the stability of marl soils with initial pH≤ 4. Also, the initial strength of marl soil does not affect the durability of indentation.

کلیدواژه‌ها English

Marl
durability
pH
Microstructure
Slake
SEM
1. García-Valero, A.; Martínez-Martínez, S.; Faz, A.; Rivera, J.; Acosta, J., Environmentally sustainable acid mine drainage remediation: Use of natural alkaline material. Journal of Water Process Engineering 2020, 33, 101064.
2. Benyahia, S.; Boumezbeur, A.; Lamouri, B.; Fagel, N., Swelling properties and lime stabilization of N'Gaous expansive marls, NE Algeria. Journal of African Earth Sciences 2020, 103895.
3. Aiban, S. A.; Wahhab, H. I. A.-A.; Al-Amoudi, O. S. B.; Ahmed, H. R., Performance of a stabilized marl base: a case study. Construction and building materials 1998, 12 (6-7), 329-340.
4. Asakereh, A.; Zarei, H.; Amiri, M., Microstructural Study of Soil Stabilization of the Southern Marl Using Lime and Nano-SiO2. Modares Civil Engineering journal 2019.
5. Wei, X.; Sun, Y.; Pan, D.; Niu, Z.; Xu, Z.; Jiang, Y.; Wu, W.; Li, Z.; Zhang, L.; Fan, Q., Adsorption properties of Na-palygorskite for Cs sequestration: Effect of pH, ionic strength, humic acid and temperature. Applied Clay Science 2019, 183, 105363.
6. Ouhadi, V.; Yong, R., The role of clay fractions of marly soils on their post stabilization failure. Engineering geology 2003, 70 (3-4), 365-375.
7. Ye, H.; Chen, F.; Sheng, Y.; Sheng, G.; Fu, J., Adsorption of phosphate from aqueous solution onto modified palygorskites. Separation and Purification Technology 2006, 50 (3), 283-290.
8. Zhang, J.; Wang, J.; Wu, Y.; Wang, Y.; Wang, Y., Preparation and properties of organic palygorskite SBR/organic palygorskite compound and asphalt modified with the compound. Construction and Building Materials 2008, 22 (8), 1820-1830.
9. Cui, J.; Zhang, Z.; Han, F., Effects of pH on the gel properties of montmorillonite, palygorskite and montmorillonite-palygorskite composite clay. Applied Clay Science 2020, 190, 105543.
10. Galán, E., Properties and applications of palygorskite-sepiolite clays. Clay minerals 1996, 31 (4), 443-453.
11. Mulders, J. J.; Oelkers, E. H., An experimental study of sepiolite dissolution rates and mechanisms at 25° C. Geochimica et Cosmochimica Acta 2020, 270, 296-312.
12. Post, J. E.; Bish, D. L.; Heaney, P. J., Synchrotron powder X-ray diffraction study of the structure and dehydration behavior of sepiolite. American Mineralogist 2007, 92 (1), 91-97.
13. Mitchell, J. K.; Soga, K., Fundamentals of Soil Behavior, John Wiley&Sons. Inc., New York 1993, 422.
14. Carroll-Webb, S. A.; Walther, J. V., A surface complex reaction model for the pH-dependence of corundum and kaolinite dissolution rates. Geochimica et Cosmochimica Acta 1988, 52 (11), 2609-2623.
15. Zhou, Y.; Cheng, H.; Wei, C.; Zhang, Y., Effect of acid activation on structural evolution and surface charge of different derived kaolinites. Applied Clay Science 2021, 203, 105997.
16. Tsiambaos, G., Correlation of mineralogy and index properties with residual strength of Iraklion marls. Engineering Geology 1991, 30 (3-4), 357-369.
17. Amiri, M.; Kalantari, B.; Dehghanih, M.; Porhonar, F.; Papi, M.; Salehian, R.; Taheri, S., Microstructural Investigation of Changes in Engineering Properties of Heated Lime-Stabilized Marl Soil. Proceedings of the Institution of Civil Engineers -Ground Improvement 2021.
18. Ouhadi, V.; PourZafarani, M., Influence of Temperature on Unconfined Compressive Strength and Water Absorption of Sand-Bentonite Mixture in the Presence of Carbonate. Modares Civil Engineering journal 2014, 14 (1), 147-157.
19. Jordán, M.; Boix, A.; Sanfeliu, T.; De la Fuente, C., Firing transformations of cretaceous clays used in the manufacturing of ceramic tiles. Applied Clay Science 1999, 14 (4), 225-234.
20. Dellisanti, F.; Valdré, G., Study of structural properties of ion treated and mechanically deformed commercial bentonite. Applied Clay Science 2005, 28 (1-4), 233-244.
21. Miščević, P.; Vlastelica, G., Durability characterization of marls from the region of Dalmatia, Croatia. Geotechnical and geological engineering 2011, 29 (5), 771-781.
22. Ankara, H.; Kandemir, S. Y.; Çiçek, F., Compression of Slake Durability Index (SDI) Values of Sphere and Rounded Marl Samples. Procedia Earth and Planetary Science 2015, 15, 93-98.
23. Singh, T.; Sharma, P.; Khandelwal, M., Effect of pH on the physico-mechanical properties of marble. Bulletin of Engineering Geology and the Environment 2007, 66 (1), 81-87.
24. ASTM D3282, Standard Practice for Classification of Soils and Soil-Aggregate Mixtures for Highway Construction Purposes. ASTM International: West Conshohocken, PA, 2015.
25. ASTM D422, Standard Test Method for Particle-Size Analysis of Soils. ASTM International: West Conshohocken, PA, 2007.
26. ASTM D4972, Standard Test Method for pH of Soils. ASTM International: West Conshohocken, PA, 2001.
27. ASTM D1125-95, Standard Test Methods for Electrical Conductivity and Resistivity of Water. ASTM International: West Conshohocken, PA, 2009.
28. Hesse, P. R. A textbook of soil chemical analysis; 1971.
29. ASTM D3080, Standard Test Method for Direct Shear Test of Soils Under Consolidated Drained Conditions. ASTM International: West Conshohocken, PA, 2004.
30. ASTM D2166, Standard Test Method for Unconfined Compressive Strength of Cohesive Soil. ASTM International: West Conshohocken, PA, 2006.
31. ASTM D4318, Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils. West Conshohocken, PA: ASTM International, 2000.
32. ASTM D698, Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12 400 ft-lbf/ft3 (600 kN-m/m3)). ASTM International West Conshohocken, PA, 2012.
33. ASTM D5084, Standard Test Methods for Measurement of Hydraulic Conductivity of Saturated Porous Materials Using a Flexible Wall Permeameter. ASTM International: West Conshohocken, PA, 2016.
34. ASTM D854, Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer. ASTM International: West Conshohocken, PA, 2014.
35. Ichimura, A.; Manning, B., Bruker D8 ADVANCE Powder XRD Instrument Manual and Standard Operating Procedure (SOP). San Francisco State University, August 2004.
36. C67, A., Standard Test Methods for Sampling and Testing Brick and Structural Clay Tile. ASTM International: West Conshohocken, PA, 2014.
37. Bahloul, O.; Abbeche, K.; Bahloul, A., Microstructure and geotechnical characteristics of a highly plastic clay treated by magnesium chloride. Mining Science 2019, 26.
38. Gökceoğlu, C.; Ulusay, R.; Sönmez, H., Factors affecting the durability of selected weak and clay-bearing rocks from Turkey, with particular emphasis on the influence of the number of drying and wetting cycles. Engineering Geology 2000, 57 (3-4), 215-237.
39. Nasedkin, V.; Boeva, N.; Garbuzova, I.; Kovalchuk, M.; Vasiliev, A., The crystal structure and chemistry of several palygorskite samples with different geneses. Crystallography Reports 2009, 54 (5), 884.
40. Neaman, A.; Singer, A., Possible use of the Sacalum (Yucatan) palygorskite as drilling muds. Applied clay science 2004, 25 (1-2), 121-124.
41. Krekeler, M. P.; Guggenheim, S., Defects in microstructure in palygorskite–sepiolite minerals: a transmission electron microscopy (TEM) study. Applied Clay Science 2008, 39 (1-2), 98-105.
42. Guggenheim, S.; Adams, J.; Bain, D.; Bergaya, F.; Brigatti, M. F.; Drits, V.; Formoso, M. L.; Galán, E.; Kogure, T.; Stanjek, H., Summary of recommendations of nomenclature committees relevant to clay mineralogy: report of the Association Internationale pour l’Etude des Argiles (AIPEA) Nomenclature Committee for 2006. Clays and Clay minerals 2006, 54 (6), 761-772.
43. Kyzas, G.; Mitropoulos, A., Advanced Low-Cost Separation Techniques in Interface Science. Academic Press: 2019.
44. Essington, M., Soil and water chemistry: an integrative approach. CRC press: 2015.
45. Tombácz, E.; Csanaky, C.; Illés, E., Polydisperse fractal aggregate formation in clay mineral and iron oxide suspensions, pH and ionic strength dependence. Colloid and Polymer Science 2001, 279 (5), 484-492.
46. Murray, H. H., Palygorskite and Sepiolite Applications. Developments in Clay Science 2006, 2, 131-140.
47. Alvarez, A.; Santaren, J.; Esteban-Cubillo, A.; Aparicio, P., Current industrial applications of palygorskite and sepiolite. In Developments in clay science, Elsevier: 2011; Vol. 3, pp 281-298.
48. Shao, H.; Kosakowski, G.; Berner, U.; Kulik, D. A.; Mäder, U.; Kolditz, O., Reactive transport modeling of the clogging process at Maqarin natural analogue site. Physics and Chemistry of the Earth, Parts A/B/C 2013, 64, 21-31.
49. Savage, D.; Walker, C.; Arthur, R.; Rochelle, C.; Oda, C.; Takase, H., Alteration of bentonite by hyperalkaline fluids: a review of the role of secondary minerals. Physics and Chemistry of the Earth, Parts A/B/C 2007, 32 (1-7), 287-297.
50. Çınar, M.; Can, M.; Sabah, E.; Karagüzel, C.; Çelik, M., Rheological properties of sepiolite ground in acid and alkaline media. Applied clay science 2009, 42 (3-4), 422-426.