رفتار استاتیکی اتصالات X شکل سخت‌شده با حلقه بیرونی تحت بار محوری کششی

نوع مقاله : پژوهشی اصیل (کامل)

نویسندگان
1 استادیار گروه مهندسی عمران، دانشکده فنی، دانشگاه گیلان
2 دانشجوی دکتری مهندسی عمران گرایش مهندسی سواحل، بنادر و سازه‌های دریایی، دانشکده مهندسی عمران، دانشگاه صنعتی خواجه نصیرالدین طوسی
چکیده
در این مقاله، اثر سخت‌کننده حلقوی بیرونی بر روی مقاومت نهایی، سختی اولیه و مودهای خرابی اتصالات لوله‌ای X شکل تحت بار محوری کششی بررسی شده است. در مرحله اول، مدل المان محدود ساخته و دقت آن با نتایج آزمایشگاهی مقایسه شده است. پس از اطمینان از دقت مدلسازی، 143 مدل المان‌محدود جهت بررسی اثر مشخصات هندسی سخت‌کننده و اتصال بر روی رفتار استاتیکی ساخته شد. در مدل‌های عددی، اثر غیرخطی مصالح و هندسه لحاظ گردیده است. همچنین، جوش متصل‌کننده اعضای فرعی به عضو اصلی مدل‌سازی شده است. نتایج نشان می‌دهد، سخت‌کننده حلقوی بیرونی می‌تواند مقاومت نهایی اتصال تحت بار کششی را تا 189 درصد افزایش دهد. علیرغم اثر محسوس سخت‌کننده بر روی مقاومت نهایی، سختی اولیه و همچنین مودهای خرابی، مطالعه بر روی این اتصالات تنها محدود به سه نمونه بوده است. همچنین، تاکنون هیچ رابطه‌ای جهت محاسبه مقاومت نهایی اتصالات X شکل با سخت‌کننده حلقوی بیرونی تحت کشش معرفی نشده است. بنابراین، پس از انجام مطالعات پارامتریک حاضر، رابطه تحلیلی برای محاسبه مقاومت نهایی اتصالات سخت شده تحت بار کششی استخراج ‌شده است. همچنین، دقت رابطه ارائه‌شده با استاندارهای دپارتمان انرژی بریتانیا مورد ارزیابی قرار گرفته است.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Static strength of CHS X-joints stiffened with outer ring under axially tensile load

نویسندگان English

Hossein Nassiraei 1
Pooya Rezadoost 2
1 Assistant Prof., Department of Civil Engineering, Faculty of Engineering, University of Guilan, Guilan, Iran.
2 Ph.D Student of Civil Engineering in the field of Coastal, Ports and Marine Structures Engineering, Faculty of Civil Engineering, Khaje Nasir Toosi University of Technology, Tehran, Iran.
چکیده English

Tubular members, due to their convenient equipment installation and high-strength performance, are widely applied in the support system of offshore platforms such as jack-ups and jackets. In most steel tubular structures; the circular hollow section (CHS) members are mainly joined using welding. Commonly, one or more braces are welded directly onto the surface of a chord member to form that so named welded connection. So far, some techniques to improve the performance of tubular connections have been proposed. Most of these methods (e.g., internal ring, doubler plate) can only be used for structures during the design, but there are only a few techniques (e.g., outer ring, FRP) which can be applied during both fabrication and service. This paper studies the static strength of CHS X-joints reinforced with external ring subjected to axially tensile load. The SOLID186 in ANSYS version 21 was used to establish the finite element (FE) models of the tubular X-joints. Validation of the FE model with experimental data showed that the present FE model can accurately predict the static behavior of the external-ring stiffened and un-stiffened tubular X-joints under tension. Afterwards, 143 FE models were generated and analyzed to investigate the effect of the joint geometry and the external ring size on the ultimate strength, failure mechanisms, and initial stiffness through a parametric study. In these models, both geometric and material non-linearity were considered. Moreover, the welds joining the chord and brace members were modeled. Results indicated that the ultimate strength of the ring stiffened X-joints under brace tension can be up to 289% that of the ultimate strength of the corresponding un-stiffened joint. Also, the increase of the β (the ratio of the brace diameter to chord diameter) results in the increase of the ultimate strength and initial stiffens (in a fixed chord diameter). Because, the increase of the β leads to the increase of the brace diameter. The increase of this member results in the increase of the joints stiffness. In addition, the decrease of the γ (the ratio of the chord radius to chord thickness) leads to the remarkable increase of the ultimate strength. Also, the increase of the τ (the ratio of the brace to chord thickness) leads to the increase of the ultimate strength (in a fixed chord thickness). However, it is not remarkable. Moreover, the comparison between failure modes of reinforced and un-reinforced joints showed that the ring can significantly improve the failure mechanisms. Also, the ring can remarkably increase the initial stiffness. Despite this significant difference between the ultimate strength, failure mode, and initial stiffness of unreinforced and ring reinforced X-joints under brace tension, the investigations on this type of the reinforced joints have been limited to only three X-joint tests. Also, no design equation is available to determine the ultimate strength of X-joints reinforced with the external ring. Therefore, the geometrically parametric study was followed by the nonlinear regression analysis to develop an ultimate strength parametric formula for the static design of ring stiffened X-joints subjected to brace tension. The proposed formula was evaluated based on the UK DoE acceptance standard.

کلیدواژه‌ها English

Tubular X-connection
tensile load
outer ring
ultimate strength
theoretical design equation
[1] Zhao, L., Zhu, L., Sun, H., Yang, L. and Chen, X., 2020. Experimental and Numerical Investigation of Axial Tensile Strength of CHS X-Joints Reinforced with External Stiffening Rings. International Journal of Steel Structures, 20(3), pp.1003-1013.
[2] Zhu, L., Yang, K., Bai, Y., Sun, H. and Wang, M., 2017. Capacity of steel CHS X-joints strengthened with external stiffening rings in compression. Thin-Walled Structures, 115, pp.110-118.
[3] Zhu, L., Han, S., Song, Q., Ma, L., Wei, Y. and Li, S., 2016. Experimental study of the axial compressive strength of CHS T-joints reinforced with external stiffening rings. Thin-Walled Structures, 98, pp.245-251.
[4] Li, W., Zhang, S., Huo, W., Bai, Y. and Zhu, L., 2018. Axial compression capacity of steel CHS X-joints strengthened with external stiffeners. Journal of Constructional Steel Research, 141, pp.156-166.
[5] Nassiraei, H., Zhu, L., Lotfollahi-Yaghin, M. and Ahmadi, H., 2017. Static capacity of tubular X-joints reinforced with collar plate subjected to brace compression. Thin-Walled Structures, 119, pp.256-265.
[6] Nassiraei, H., Mojtahedi, A. and Lotfollahi-Yaghin, M., 2018. Static strength of X-joints reinforced with collar plates subjected to brace tensile loading. Ocean Engineering, 161, pp.227-241.
[7] Chen, Y., Feng, R. and Xiong, L., 2016. Experimental and numerical investigations on double-skin CHS tubular X-joints under axial compression. Thin-Walled Structures, 106, pp.268-283.
[8] Nassiraei, H. and Rezadoost, P., 2021. Static capacity of tubular X-joints reinforced with fiber reinforced polymer subjected to compressive load. Engineering Structures, 236, p.112041.
[9] American Welding Society (AWS), 2010, Part D 1.1, Structural welding code.
[10] Choo, Y., van der Vegte, G., Zettlemoyer, N., Li, B. and Liew, J., 2005. Static Strength of T-Joints Reinforced with Doubler or Collar Plates. I: Experimental Investigations. Journal of Structural Engineering, 131(1), pp.119-128.
[11] UK Department of Energy, Background Notes to the Fatigue Guidance of Offshore Tubular Connections, 1983, London, UK.