1. Vasistha, S., Khanra, A., & Rai, M. P. 2020. Journal of Water Process Engineering Influence of microalgae-ZnO nanoparticle association on sewage wastewater towards efficient nutrient removal and improved biodiesel application : An integrated approach. Journal of Water Process Engineering, June, 101711. https://doi.org/10.1016/j.jwpe.2020.101711.
2. Al-jabri, H., Das, P., Khan, S., Thaher, M., & Abdulquadir, M. 2021. Treatment of Wastewaters by Microalgae and the Potential Applications of the Produced Biomass — A Review.
3. Brennan, L., & Owende, P. (2010). Biofuels from microalgae-A review of technologies for production, processing, and extractions of biofuels and co-products. Renewable and Sustainable Energy Reviews, 14(2), 557–577. https://doi.org/10.1016/j.rser.2009.10.009.
4. SHandilya, K., Pattarkine, K. M., Vikram, 2019. Using microalgae for treating wastewater, Advances in feedstock conversion technologies for alternative fuels and bioproducts. Elssevier, ,doi.org/10.1016/B978-0-12-817937-6.00007-2.
5. Maryjoseph, S., & Ketheesan, B. 2020. Case Studies in Chemical and Environmental Engineering Microalgae based wastewater treatment for the removal of emerging contaminants : A review of challenges and opportunities. Case Studies in Chemical and Environmental Engineering, 2(August), 100046. https://doi.org/10.1016/j.cscee.2020.100046.
6. Sukla, L. B., Subudhi, E., & Pradhan, D. 2019. The Role of Microalgae in Wastewater Treatment. In The Role of Microalgae in Wastewater Treatment. https://doi.org/10.1007/978-981-13-1586-2.
7. Seo, J. Y., Kim, M. G., Lee, K., & Lee, Y. 2017. Multifunctional Nanoparticle Applications to Microalgal Biorefinery. 59–87. https://doi.org/10.1007/978-3-319-45459-7
8. Ingle, A. P., Chandel, A. K., Philippini, R., Martiniano, S. E., & Silv, S. 2020. SS symmetry Advances in Nanocatalysts Mediated Biodiesel Production : A Critical Appraisal. 1–21.
9. Asadi Pariya & Amini Rad Hassan & Qaderi Farhad , 2019. Comparison of Chlorella vulgaris and Chlorella sorokiniana pa.91 in post treatment of dairy wastewater treatment plant effluents, Environmental Science and Pollution Research, Accepted: 23 July 2019, Times 26(28),29473-29489 https://doi.org/10.1007/s11356-019-06051-8.
10. Kim, M., Moon, J., & Lee, Y. 2020. Biomass and Bioenergy Loading effects of low doses of magnesium aminoclay on microalgal Microcystis sp . KW growth , macromolecule productions , and cell harvesting. Biomass and Bioenergy, 139(May), 105619. https://doi.org/10.1016/j.biombioe.2020.105619
11. Ogbonna, J. C., Nweze, N. O., & Ogbonna, C. N. 2021. Effects of light on cell growth , chlorophyll , and carotenoid contents of Chlorella sorokiniana and Ankistrodesmus falcatus in poultry dropping medium. 9(2), 157–163. https://doi.org/10.7324/JABB.2021.9215.
12. Farooq, W., Lee, H., SukHuh, Y. , Lee, Y.Ch., 2016. Chlorella vulgaris cultivation with an additive of magnesium-aminoclay, Algal Research 17 211–216, http://dx.doi.org/10.1016/j.algal.2016.05.004.
13. Liu, P., Wang, T., Yang, Z., Hong, Y., Xie, X ., Hou, Y., 2019. Effects of Fe3O4 Nanoparticle Fabrication and Surface Modification on Chlor- ella sp. Harvesting Efficiency of Civil and Environmental Engineering Georgia Institute of Technology ,. Science of the Total Environment, 135286. https://doi.org/10.1016/j.scitotenv.2019.135286
14. Kim, B., Khac, V., Bui, H., Farooq, W., Jeon, S. G., & Oh, Y. (n.d.). 2018. Magnesium Aminoclay-Fe 3 O 4 (MgAC-Fe 3 O 4 ) Hybrid Composites for Harvesting of Mixed Microalgae. 4, 1–10. https://doi.org/10.3390/en11061359
15. Li, J., Qiao, S., Tan, G., Yu, Y., Liu, D., & Pan, W. 2019. A Non-innocent Magnesium Organoclay-Based Drug Vehicle for Improving the Cancer Therapy Effect of Methotrexate. AAPS PharmSciTech, 20(8). https://doi.org/10.1208/s12249-019-1456-2
16. Lee, Y., Uk, H., Lee, K., Kim, B., Yeun, S., Choi, M., Farooq, W., Seok, J., Park, J., Lee, J., Oh, Y., & Suk, Y. 2014. Aminoclay-conjugated TiO 2 synthesis for simultaneous harvesting and wet-disruption of oleaginous Chlorella sp . Chemical Engineering Journal, 245, 143–149. https://doi.org/10.1016/j.cej.2014.02.009
17. Lee, Y., Kim, B., Farooq, W., Chung, J., Han, J., Shin, H., Hwa, S., Park, J., Lee, J., & Oh, Y. 2013. Harvesting of oleaginous Chlorella sp . by organoclays. Bioresource Technology, 132, 440–445. https://doi.org/10.1016/j.biortech.2013.01.102
18. Lee, Y. C., Park, W. K., & Yang, J. W. 2011. Removal of anionic metals by amino-organoclay for water treatment. Journal of Hazardous Materials, 190(1–3), 652–658. https://doi.org/10.1016/j.jhazmat.2011.03.093
19. Yaqoubnejad P, Amini Rad H, Taghavijeloudar M, 2021. Development a novel hexagonal airlift flat plate photobioreactor for the fixation and wastewater treatment improvement of microalgae growth that simultaneously enhance CO2 bio-fixation and wastewater treatment.Journal of Environmental Management 298 (2021) 113482. https://doi.org/10.1016/j.jenvman.2021.113482.
20. Chaneva G, Furnadzhieva S, Minkova K, Lukavsky J .2007. Effect of light and temperature on the cyanobacterium Arthronema africanum – a prospective phycobiliprotein-producing strain. J Appl Phycol 19:537–544. https://doi.org/10.1007/s10811-007-9167-6.
21. Wang, S., Hou, W., Dong, H., 2013. Control of temperature on microbial community structure in Hot Springs of the Tibetan Plateau. PLoS One. https://doi.org/10.1371/journal. pone.0062901.
22. Rangel-Basto, Y.A., García-Ochoa, I.E., Suarez-Gelvez, J.H., Zuorro, A., Barajas- Solano, A.F., Urbina-Suarez, N.A., 2018. The effect of temperature and enzyme concentration in the transesterification process of synthetic microalgae oil, Chem. Eng. Trans. 64 : 331–336, https://doi.org/10.3303/CET1864056.
23. Vargas-Estrada, L., Torres-Arellano, S., Longoria, A., Dulce M.Arias., Okoye, P.U., Sebastian, P.J., 2020. Role of nanoparticles on microalgal cultivation: A review, Fuel 280 : 118598, Fuel 280 : 118598
24. Datta, K. K. R., Achari, A., and Eswaramoorthy, M., 2014. Aminoclay : A Functional Layered Material with Multifaceted Applications Aminoclay : a functional layered material with multifaceted applications. June 2013. https://doi.org/10.1039/c3ta00100h
25.
1.