تاثیر نانوماده آمینوکلی‌منیزیم (MgAC) بر رشد ریزجلبک بومی C‌hlorella Sorokiniana pa.91 در محیط کشت فاضلاب شهر ساری

نوع مقاله : پژوهشی اصیل (کامل)

نویسندگان
1 دانشجوی دکتری تخصصی
2 استادیار دانشگاه صنعتی نوشیروانی بابل
چکیده
کشت ریزجلبک به دلیل توده زیستی بالا، تولید چربی، حذف کربن، کشت در اراضی غیرقابل ‌استفاده و طیف گسترده‌ای از محصولات نهایی مورد توجه قرار گرفته است و تحقیق در خصوص افزایش بهره‌وری و کاهش هزینه‌ها، تجاری‌سازی موجب تسهیل کشت این موجودات می‌شود. امروزه به دلیل هزینه بالای سنتز محیط کشت در مقیاس صنعتی از فاضلاب به‌عنوان محیط کشت ارزان و قابل‌دسترس استفاده شده و همچنین تصفیه فاضلاب و تولید بیودیزل از مزیت‌های دیگر این سیستم است. هدف این پژوهش بهینه‌سازی رشد و کیفیت زیست‌توده ریز جلبک بومی کلرلاسوروکینیانا با استفاده از نانو ماده آمینوکلی‌منیزیم در محیط کشت فاضلاب شهر ساری بود. در این تحقیق تجربی با بهره‌گیری از روش پاسخ سطح طراحی مرکزی[1] (RSM-CCD) تأثیر سه فاکتور دما، شدت نور و غلظت نانو ماده بر وزن خشک زیست‌توده، نرخ رشد مخصوص، مقادیر کلروفیل و کارتنوئید در محیط کشت فاضلاب در 12 ساعت روشنایی و 12 ساعت خاموشی موردبررسی قرار گرفت. آناالیز نتایج نشان از افزایش وزن خشک زیست‌توده، نرخ رشد مخصوص، کلروفیل و کارتنوئید به ترتیب معادل 13/47، 26/30، 33/81 و 47/36 درصد در شرایط بهینه دمای 20 درجه سانتی‌گراد، شدت تابش 2000 لوکس و مقدار 05/0 گرم در لیتر نانو ماده آمینوکلی‌منیزیم نسبت به نمونه شاهد حاصل شد. همچنین به منظور قابلیت اجرایی بودن پژوهش حاضر شرایط آزمایش در فاضلاب واقعی انجام شد.




[1] Response surface methodology–central composite design



کلیدواژه‌ها

موضوعات


عنوان مقاله English

The effect of Magnesium Aminoclay (MgAC) nanomaterials on Chlorella sorokiniana pa.91 native microalgae growth in Sari culture medium

نویسندگان English

masumeh panbehkar 1
babol Amini Rad 2
1 student of pdf
2 ASSICTENT prophesor
چکیده English

Due to considerable carbon removal, high on-site biomass, and lipid production compared to traditional agriculture, and a wide range of final products, recent research has focused on the facile commercialization of Microalgae by increasing productivity and cost-effectiveness. Nowadays, wastewater is used as an inexpensive and easy-accessible culture medium rather than expensive culture medium synthesis on large scale, therefore, simultaneous wastewater treatment and production of biodiesel from microalgae can be considered sustainable, cost-effective, and environmentally friendly approach. In this regard, the present study is aimed to optimize the growth and biomass quality of Chlorella sorokiniana pa.91 microalgae from Sari wastewater culture medium using Magnesium Aminoclay nanomaterial (MgAC). In this study by application of the surface response method - central design, the effect of temperature, light intensity, and nanomaterial concentration was investigated on the parameters including the dry weight of biomass on the seventh day, specific growth rate, chlorophyll, and carotenoids in wastewater after 12 h exposure to visible light. Under 37 μmol photons, m-2 s-1 radiation intensity, and in the presence of 0.05 g/L of magnesium aminoclay NM at 20 °C, the optimal condition including biomass dry weight, specific growth rate, chlorophyll, and carotenoids increased by 47.13, 30.26, 81.33 and 36.47% respectively compared to the control sample. Also, to make the present study feasible, the test conditions were performed in real wastewater.

کلیدواژه‌ها English

Chlorella Sorokiniana pa.91
waste water
MgAC
RSM-CCD
1. Vasistha, S., Khanra, A., & Rai, M. P. 2020. Journal of Water Process Engineering Influence of microalgae-ZnO nanoparticle association on sewage wastewater towards efficient nutrient removal and improved biodiesel application : An integrated approach. Journal of Water Process Engineering, June, 101711. https://doi.org/10.1016/j.jwpe.2020.101711.
2. Al-jabri, H., Das, P., Khan, S., Thaher, M., & Abdulquadir, M. 2021. Treatment of Wastewaters by Microalgae and the Potential Applications of the Produced Biomass — A Review.
3. Brennan, L., & Owende, P. (2010). Biofuels from microalgae-A review of technologies for production, processing, and extractions of biofuels and co-products. Renewable and Sustainable Energy Reviews, 14(2), 557–577. https://doi.org/10.1016/j.rser.2009.10.009.
4. SHandilya, K., Pattarkine, K. M., Vikram, 2019. Using microalgae for treating wastewater, Advances in feedstock conversion technologies for alternative fuels and bioproducts. Elssevier, ,doi.org/10.1016/B978-0-12-817937-6.00007-2.
5. Maryjoseph, S., & Ketheesan, B. 2020. Case Studies in Chemical and Environmental Engineering Microalgae based wastewater treatment for the removal of emerging contaminants : A review of challenges and opportunities. Case Studies in Chemical and Environmental Engineering, 2(August), 100046. https://doi.org/10.1016/j.cscee.2020.100046.
6. Sukla, L. B., Subudhi, E., & Pradhan, D. 2019. The Role of Microalgae in Wastewater Treatment. In The Role of Microalgae in Wastewater Treatment. https://doi.org/10.1007/978-981-13-1586-2.
7. Seo, J. Y., Kim, M. G., Lee, K., & Lee, Y. 2017. Multifunctional Nanoparticle Applications to Microalgal Biorefinery. 59–87. https://doi.org/10.1007/978-3-319-45459-7
8. Ingle, A. P., Chandel, A. K., Philippini, R., Martiniano, S. E., & Silv, S. 2020. SS symmetry Advances in Nanocatalysts Mediated Biodiesel Production : A Critical Appraisal. 1–21.
9. Asadi Pariya & Amini Rad Hassan & Qaderi Farhad , 2019. Comparison of Chlorella vulgaris and Chlorella sorokiniana pa.91 in post treatment of dairy wastewater treatment plant effluents, Environmental Science and Pollution Research, Accepted: 23 July 2019, Times 26(28),29473-29489 https://doi.org/10.1007/s11356-019-06051-8.
10. Kim, M., Moon, J., & Lee, Y. 2020. Biomass and Bioenergy Loading effects of low doses of magnesium aminoclay on microalgal Microcystis sp . KW growth , macromolecule productions , and cell harvesting. Biomass and Bioenergy, 139(May), 105619. https://doi.org/10.1016/j.biombioe.2020.105619
11. Ogbonna, J. C., Nweze, N. O., & Ogbonna, C. N. 2021. Effects of light on cell growth , chlorophyll , and carotenoid contents of Chlorella sorokiniana and Ankistrodesmus falcatus in poultry dropping medium. 9(2), 157–163. https://doi.org/10.7324/JABB.2021.9215.
12. Farooq, W., Lee, H., SukHuh, Y. , Lee, Y.Ch., 2016. Chlorella vulgaris cultivation with an additive of magnesium-aminoclay, Algal Research 17 211–216, http://dx.doi.org/10.1016/j.algal.2016.05.004.
13. Liu, P., Wang, T., Yang, Z., Hong, Y., Xie, X ., Hou, Y., 2019. Effects of Fe3O4 Nanoparticle Fabrication and Surface Modification on Chlor- ella sp. Harvesting Efficiency of Civil and Environmental Engineering Georgia Institute of Technology ,. Science of the Total Environment, 135286. https://doi.org/10.1016/j.scitotenv.2019.135286
14. Kim, B., Khac, V., Bui, H., Farooq, W., Jeon, S. G., & Oh, Y. (n.d.). 2018. Magnesium Aminoclay-Fe 3 O 4 (MgAC-Fe 3 O 4 ) Hybrid Composites for Harvesting of Mixed Microalgae. 4, 1–10. https://doi.org/10.3390/en11061359
15. Li, J., Qiao, S., Tan, G., Yu, Y., Liu, D., & Pan, W. 2019. A Non-innocent Magnesium Organoclay-Based Drug Vehicle for Improving the Cancer Therapy Effect of Methotrexate. AAPS PharmSciTech, 20(8). https://doi.org/10.1208/s12249-019-1456-2
16. Lee, Y., Uk, H., Lee, K., Kim, B., Yeun, S., Choi, M., Farooq, W., Seok, J., Park, J., Lee, J., Oh, Y., & Suk, Y. 2014. Aminoclay-conjugated TiO 2 synthesis for simultaneous harvesting and wet-disruption of oleaginous Chlorella sp . Chemical Engineering Journal, 245, 143–149. https://doi.org/10.1016/j.cej.2014.02.009
17. Lee, Y., Kim, B., Farooq, W., Chung, J., Han, J., Shin, H., Hwa, S., Park, J., Lee, J., & Oh, Y. 2013. Harvesting of oleaginous Chlorella sp . by organoclays. Bioresource Technology, 132, 440–445. https://doi.org/10.1016/j.biortech.2013.01.102
18. Lee, Y. C., Park, W. K., & Yang, J. W. 2011. Removal of anionic metals by amino-organoclay for water treatment. Journal of Hazardous Materials, 190(1–3), 652–658. https://doi.org/10.1016/j.jhazmat.2011.03.093
19. Yaqoubnejad P, Amini Rad H, Taghavijeloudar M, 2021. Development a novel hexagonal airlift flat plate photobioreactor for the fixation and wastewater treatment improvement of microalgae growth that simultaneously enhance CO2 bio-fixation and wastewater treatment.Journal of Environmental Management 298 (2021) 113482. https://doi.org/10.1016/j.jenvman.2021.113482.
20. Chaneva G, Furnadzhieva S, Minkova K, Lukavsky J .2007. Effect of light and temperature on the cyanobacterium Arthronema africanum – a prospective phycobiliprotein-producing strain. J Appl Phycol 19:537–544. https://doi.org/10.1007/s10811-007-9167-6.
21. Wang, S., Hou, W., Dong, H., 2013. Control of temperature on microbial community structure in Hot Springs of the Tibetan Plateau. PLoS One. https://doi.org/10.1371/journal. pone.0062901.
22. Rangel-Basto, Y.A., García-Ochoa, I.E., Suarez-Gelvez, J.H., Zuorro, A., Barajas- Solano, A.F., Urbina-Suarez, N.A., 2018. The effect of temperature and enzyme concentration in the transesterification process of synthetic microalgae oil, Chem. Eng. Trans. 64 : 331–336, https://doi.org/10.3303/CET1864056.
23. Vargas-Estrada, L., Torres-Arellano, S., Longoria, A., Dulce M.Arias., Okoye, P.U., Sebastian, P.J., 2020. Role of nanoparticles on microalgal cultivation: A review, Fuel 280 : 118598, Fuel 280 : 118598
24. Datta, K. K. R., Achari, A., and Eswaramoorthy, M., 2014. Aminoclay : A Functional Layered Material with Multifaceted Applications Aminoclay : a functional layered material with multifaceted applications. June 2013. https://doi.org/10.1039/c3ta00100h
25.
1.