بررسی و مدل سازی عددی انتقال گازوئیل در ماسه اصلاح شده با کمپوست زباله شهری

نوع مقاله : پژوهشی اصیل (کامل)

نویسندگان
دانشگاه تربیت مدرس
چکیده
بررسی تأثیر اصلاح­کننده­ های آلی بر رفتار و گسترش آلاینده های مایع غیرآبی سبک (LNAPL) در خاک برای ارزیابی خطر آلودگی آب­های زیرزمینی، امری مفید می ­باشد. هدف از این پژوهش بررسی اثر کمپوست زباله­ شهری به عنوان اصلاح­کننده­ آلی بر نحوه­ انتقال گازوئیل درون ماسه بوده که در مقیاس آزمایشگاه انجام پذیرفته است. در این تحقیق از ستون­های با ارتفاع 30 و قطر 4/2 سانتی­متر از جنس پلکسی­گلاس و سه نوع ماسه­ ریز، متوسط و درشت دانه استفاده شد. ستون­ ها تا ارتفاع 24 سانتیمتر با ماسه و سپس لایه­ رویی به ارتفاع 4 سانتی­متر با 5، 10 و 15 گرم کمپوست که معادل 100، 150 و 300 تن بر هکتار بوده، به طور همگن مخلوط و پر شد. در ادامه نیمی از لایه­ ماسه­ مخلوط با کمپوست در هر ستون به گازوئیل با غلظت 20 میلی­گرم بر گرم ماسه آغشته گردید. جهت شبیه ­سازی بارش، آب با سه نرخ جریان 25/، 5/0 و 1 میلی­لیتر بر دقیقه بر ستون­ها اعمال شد. شبیه­ سازی عددی داده­ های آزمایشگاهی و تعیین پارامترهای انتقال، توسط مدل انتقال UTCHEM انجام پذیرفت. مطابق نتایج، مدل عددی حاصل، دارای همپوشانی قابل قبولی با داده­ های آزمایشگاهی بود. همچنین با افزایش میزان کمپوست در پارامتر ضریب پراکندگی تغییرات قابل ملاحظه­ای مشاهده نشد. در این پژوهش ضریب پخش با افزایش دو برابری مقدار کمپوست، 110 درصد افزایش یافته و به عنوان نمونه، در ستون حاوی مخلوط ماسه ریزدانه و کمپوست با افزایش دو برابری مقدار کمپوست در نرخ­ های جریان 25/0، 5/0 و 1میلی­لیتر بر دقیقه، فاکتور تأخیر به ترتیب به میزان 78، 100 و 80 درصد افزایش یافت.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Investigation and Numerical Modeling of Diesel Fuel Transport in Sand Amended with Municipal Waste Compost

نویسندگان English

Pouya Zaferani
Nader Mokhtarani
Civil and Environmental Engineering Faculty, Tarbiat Modares University
چکیده English

Due to the production and extensive use of oil and its derivatives, soil pollution with oil compounds is a challenging subject in todaychr('39')s world. In Iran and many other countries, the soil around oil exploration reservoirs, refineries, etc., has been polluted by oil pollution and may also pollute groundwater. The greatest concern and danger are when the oil contaminant reaches the groundwater aquifer, its solvent dissolves in the water and contaminates the environment with groundwater. Therefore, the importance of studying how the contamination moves and spreads in the soil is clear and valuable. The purpose of this study is to investigate the effect of an organic amendment such as municipal waste compost on behavior and emission of diesel as a light non-aqueous phase liquid (LNAPL) in the sand and to use an efficient model to predict the distribution of pollutants in mixed sand with compost. Also, the effect of grain parameters and rainfall intensity on the way of diesel emission into the sand without compost and the sand mixed with compost was investigated. In this regard, in this study, 30 cm long columns with a diameter of 2.4 cm made of Plexiglas were used to simulate a one-dimensional environment of transmission. Three types of sand with the particle size of 0.1-0.25mm (fine-grained sand), 0.2-0.5mm (medium-grained sand), and 0.5-1.0mm (coarse-grained sand), prepared and after decontamination was entered into columns. The columns were filled to a height of 24 cm with sand, and the top layer to a height of 4 cm was filled with a mixture of sand and compost with specified ratios. Then, half a layer of mixed sand and compost in each column was soaked in diesel at a concentration of 20 mg per 1 gr of the sand. The distilled water was entered into the column at three flow rates of 1, 0.5, and 0.25 mL/min (equal to the intensity of 13.27, 6.33, and 3.31 cm/h, respectively) to simulate the process of transfer of diesel into the columns. Laboratory data have been simulated using a UTCHEM numerical model. UTCHEM is a three-dimensional and multi-phase model that simulates the process of flow and chemical transfer in homogeneous and heterogeneous porous media. Increasing rainfall intensity and particle diameter have led to an increase in the flow rate of contamination within the sand and reduced contamination time. There are no significant changes were observed in the parameter of the dispersion coefficient by increasing the amount of compost. As the amount of compost in the sand has increased, the soil distribution coefficient and the retardation factor, which are the two effective parameters on the absorption of pollutants, have increased. As an example, by doubling the amount of compost at flow rates of 0.25, 0.5, and 1 mL/min, the retardation factor increased by 78, 100, and 80 percent, respectively. These values ​​for the mixture of medium sand and compost were 70, 79, and 71 percent, respectively, and in the mixture of coarse sand with compost were 76, 82, and 73 percent respectively. The amount of distribution coefficient has increased by 110% with doubling the amount of compost in all three types of sand. There is an exponential relationship between the intensity of the rainfall and the distribution coefficient in the mixture of fine-grained sand, medium-grained sand, and coarse-grained sand and three amounts of 5, 10, and 15 grams of compost. There is an exponential relationship between flow intensity and retardation factor for sand without compost and sand mixture and 5 grams of compost in a mixture of the three types of sand. In the case of mixing all three types of sand with 10 grams and 15 grams of compost, the linear relationship is the most accurate mathematical equation between flow intensity and retardation factor.

کلیدواژه‌ها English

petroleum pollution
Contaminant Transport
soil pollution
compost
numerical transmission model
[1] Van der Perk M. 2006. Soil and Water Contamination: From Molecular to Catchment Scale. Taylor& Francis Group, London.
[2] Balseiro-Romero, M, Monterroso, C, Casares, J.J, 2018. Environmental Fate of Petroleum Hydrocarbons in Soil: Review of Multiphase Transport, Mass Transfer, and Natural Attenuation Processes, Pedosphere 28(6), 833-847.
[3] Hemond, H.F., Fechner, E.J., 2015. Chemical Fate and Transport in the Environment, third edition, Elsevier.
[4] Berlin, M, Vasudevan, M, Kumar, G.S, Nambi, I.M, 2016. Numerical Modelling on Fate and Transport of Petroleum Hydrocarbons in an Unsaturated Subsurface System for Varying Source Scenario, Journal of Earth system science (124), 655-674.
[5] Chrysikopoulos, C.V., Voudrias, E.A., Fyrillas, M.M., 1994.Modeling of Contaminant Transport Resulting from Dissolution of Nonaqueous Phase Liquid Pools in Saturated Porous Media. Transport in Porous Media, 16:122-145.
[6] Zalidis, G.C., Annable, M.D., Wallace, R.B., Hayden, N.J., Voice, T.C., 1991. A Laboratory Method for Studying the Aqueous Phase Transport of Dissoled Constituents from Residually Held NAPL in Unsaturated Soil Columns. Journal of Contaminant Hydrology, 8:143-156.
[7] Yang M, Yang Y S, Du X, Cao Y, Lei Y. 2013. Fate and transport of petroleum hydrocarbons in vadose zone: Compound specific natural attenuation. Water Air Soil Pollution. 224: 1439.
[8] Pan, Y, Yang, J, Jia, Y, Xu, Z, 2015. Experimental study on non-aqueous phase liquid multiphase flow characteristics and controlling factors in heterogeneous porous media, Environmental Earth Science, 75-75.
[10] Thevenot, M. and Dousset, S., 2015, Compost Effect on Diuron Retention and Transport in Structured Vineyard Soils, Pedosphere, 25(1). 25–36.
[11] Smaranda, C., Popescu, M.C., Bulgariu, D., Malutan, T., Gavrilescu, M., 2016. Adsorption of organic pollutants onto a Romanian soil: Column dynamics and transport. Process Safety and Environment Protection, S0957-5820(16)30114-8.
[12] Lenhard, R.J., Rayner, J.L., Davis, G.B., 2017. A practical tool for estimating subsurface LNAPL distributions and transmissivity using current and historical fluid levels in groundwater wells Effects of entrapped and residual LNAPL. Journal of Contaminant Hydrology (205), 1-11.
[13] Gharedaghloo, B., Price, J.S., 2019. Characterizing the immiscible transport properties of diesel and water in peat soil. Journal of Contaminant Hydrology S0169-7722(18)30229-8.
[14] Pan, Y., Zhang, Q., Yu, Y., Tong, Y., Wu, W., Zhou, Y., Hou, W., Yang, J., 2020. Three-dimensional migration and resistivity characteristics of crude oil in heterogeneous soil layers, Environmental Pollution, (268), 115309.
[15] Alazaiza, M.Y.D., Ramli, M.H., Copty, N.K., Ling, M.C., 2021. Assessing the impact of water infiltration on LNAPL mobilization in sand column using simplified image analysis method, Journal of Contaminant Hydrology, (238), 103769.
[16] Kodešová, R, Kočárek, M, Hajková, T., Hýbler, M., Drábek, O., Kodeš, V., 2012. Chlorotoluron mobility in compost amended soil, Soil & Tillage Research, (118), 88-96.
[17] User-Guide of Infracal TOG/TPH, CVH Model
[18] Yang T., Wang Q., Xu D., Lv J., Lei Y. 2016. A method for estimating the interaction depth of surface soil with simulated rain. Catena. 124: 109-118.
[19] Kazemi Nia Korrani, A, Sepehrnoori, K., Delshad, M., 2013. Coupling IPhreeqc with UTCHEM to model reactive flow and transport, Computers & Geosciences, (82), 152-169.
[20] Richter O, Diekkrüger B, Nörtersheuser P. 1996. Environmental Fate Modelling of Pesticides. VCH Verlargsgesellschaft mbH, Weinheim.
[21] Fenoll, J., Vela, N., Navarro, G., Perez-Lucas, G. and Navarro, S. 2014. Assessment of agro-industrial and composted organic wastes for reducing the potential leaching of triazine herbicide residues through the soil. Sci. Total Environ. 493: 124)132(.
[22] Fernandez-Bayo, J. D., Nogales, R. and Romero, E. 2009. Assessment of three vermicomposts as organic amendments used to enhance diuron sorption in soils with low organic carbon content. Eur. J. Soil Sci. 60: 935)944(.
[23] Sharma, R.S, Mohamed, M.H, 2003. An experimental investigation of LNAPL migration in an unsaturated/saturated sand, Engineering Geology (70) 305– 313.
[24] Godoy, V. A., Zuquette, L.V. and Gómez-Hernández, J. J., 2019. Spatial variability of hydraulic conductivity and solute transport parameters and their spatial correlations to soil properties. Geoderma. 339: 59-69.
[25] Wei1, X., Shao, M., Du, L., Horton, R., 2014. Humic acid transport in saturated porous media: Influence of flow velocity and influent concentration. Journal of Environmental Science, vol. 2554 – 2561.
[26] Zhang, H, Ke, S., Zhang, S., Shao, J., Chen, H., 2020. Reactive transport modeling of pollutants in heterogeneous layered paddy soils: a) Cadmium migration and vertical distributions, Journal of Contaminant Hydrology. (235), 103735.