مطالعه عددی رفتار چرخه‌ای اتصال ستون CFST مدفون شده در فونداسیون

نوع مقاله : پژوهشی اصیل (کامل)

نویسندگان
1 دانشگاه صنعتی نوشیروانی بابل
2 دانشگاه مازندران
چکیده
در این مقاله به تجزیه و تحلیل عددی رفتار اتصال ستون CFST مدفون شده در فونداسیون تحت بارگذاری ترکیبی محوری-خمشی پرداخته شده است. ابتدا مدل اجزاء محدود پیشنهادی توسط نتایج آزمایشگاهی تحقیقات قبلی تحلیل و مقایسه شده که نتایج نشان داد که آسیب موضعی، الگوهای خرابی و منحنی هیسترزیس با هم مطابقت داشتند. در ادامه مطالعه دقیق پارامتریک برای ارزیابی رفتار چرخه‌ای اتصال CFST مدفون شده در فونداسیون با متغیرهای قطر به ضخامت طول مدفون شدگی، مقاومت فشاری بتن و نحوه اتصال ستون CFST به فونداسیون انجام شده است. بر اساس نمودارهای هیسترزیس حاصل شده از مطالعه پارامتریک مدل‌های عددی، مقادیر شاخص‌های سختی، مقاومت، شکل‌پذیری و انرژی برای نمونه‌ها محاسبه و مورد بررسی قرار گرفته است. نتایج مطالعه نشان داد با استفاده از مدل اجزاء محدود پیشنهادی، در اتصال ستون CFST به فونداسیون با صفحه ستون نسبت به ستون CFST در حالت مدفون رفتار چرخه‌ای ضعیف‌تری حاصل شده است. علاوه بر این، استفاده از سخت‌کننده‌ها در پای ستون مدفون در فونداسیون نسبت به حالت بدون سخت کننده رفتار هیسترزیس بهتر و با استهلاک انرژی بالاتری را از خود نشان داده است. با افزایش مقاومت بتن، تغییرات در حلقه‌های نمودار هیسترزیس، مقاومت جانبی و سختی جانبی، عملکرد شکل‌پذیری و اتلاف انرژی تجمعی نیز افزایش کمی داشته است. حالت‌های آسیب در اتصال ستون CFST به فونداسیون دارای صفحه ستون، در حالت مدفون شده بدون سخت کننده و با سخت کننده دیسکی، بصورت شکستگی لوله فولادی در پای ستون است. آسیب در حالت اتصال ستون CFST مدفون شده با سخت کننده طولی، بصورت ترک خوردگی قطری بتن روی فونداسیون است. افزایش ضخامت لوله فولادی و شرایط مدفون شدگی ستون CFST با سخت کننده اثر مثبتی بر روی حلقه‌های هیسترزیس اتصال CFST به فونداسیون ایجاد کرده و این نوع اتصال توانسته است مقاومت جانبی، سختی جانبی، شکل پذیری و انرژی تجمعی اتلافی را به طور قابل توجهی بهبود بخشد.


[1] Concrete Filled Steel Tube

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Numerical study of the cyclic behavior of embedded CFST columns to foundation

نویسندگان English

saleh mohamad ebrahimzadeh sepasgozar 1
morteza naghipour 1
Mahdi Nematzadeh 2
1 Babol Noshirvani University of Technology
2 Mazandaran University
چکیده English

In this paper, a finite element analysis of the behavior of embedded CFST columns to the foundation under axial-lateral combined loading. First, the proposed finite element model is compared and analyzed by the experimental results of previous research, which showed that the local damage, failure patterns and hysteresis curves were consistent. A detailed parametric study to evaluate the cyclic behavior of embedded CFST columns to the foundation with the characteristics, the ration diameter to thickness, embedded length, compressive strength and connection conditions CFST column to the foundation. Based on the parametric study, the values of stiffness, strength, ductility and energy for the studied specimen have been calculated. The results showed that using the proposed finite element model, weak cyclic behavior for CFST connection to the foundation in the conditions of connection with the base plate and better cyclic behavior for the CFST column and its connection to the foundation in the embedded conditions is obtained. In addition, the hysteresis behavior of the CFST column connection with the embedded stiffener plate is much better than the embedded connection without the stiffener. The rings stiffener of the hysteresis diagram changes compact condition with increasing concrete strength. In addition, lateral strength, lateral stiffness, ductility performance and cumulative energy dissipation also increased in compact specimens with increasing confine concrete. The failure modes of the CFST connection to the foundation with the base plate are the same as the embedded connection mode without the stiffener and with the ring stiffener. The failure modes in these three modes are from the connection as a tearing steel pipe at the end of the column. In the case of an embedded connection with a longitudinal stiffener, it is a diagonal crack of the concrete on the foundation. Lateral strength, lateral stiffness, ductility performance, and cumulative energy also increase with increasing steel pipe thickness. CFST column burial conditions with hardeners have a positive effect on the hysteresis rings of CFST connection to the foundation, and this type of connection has been able to significantly improve lateral strength, lateral stiffness, ductility and dissipative cumulative dissipation energy.

کلیدواژه‌ها English

Concrete filled Steel tube
Column connection to foundation
Stiffness
embedded length
Finite element analysis
[1] AASHTO, L. 2012. AASHTO LRFD Bridge design specifications. American Association of State Highway and Transportation Officials, Washington, DC.
[2] AISC. Steel Construction Manual. American Institute of Steel Construction, Chicago, IL, 14th Ed.
[3] Borzouie, J., MacRae, G. A., Chase, J. G., Rodgers, G. W., & Clifton, G. C. 2016. Experimental studies on cyclic performance of column base strong axis–aligned asymmetric friction connections. Journal of Structural Engineering, 1421, 04015078.
[4] Kanvinde, A. M., Higgins, P., Cooke, R. J., Perez, J., & Higgins, J. 2015. Column base connections for hollow steel sections: seismic performance and strength models. Journal of structural engineering, 1417, 04014171.
[5] Rodas, P. T., Zareian, F., & Kanvinde, A. 2016. Hysteretic model for exposed column–base connections. Journal of Structural Engineering, 14212, 04016137.
[6] Cui, Y., Nagae, T., & Nakashima, M. 2009. Hysteretic behavior and strength capacity of shallowly embedded steel column bases. Journal of structural engineering, 13510, 1231-1238.
[7] Grilli, D., Jones, R., & Kanvinde, A. 2017. Seismic performance of embedded column base connections subjected to axial and lateral loads. Journal of Structural Engineering, 1435, 04017010.
[8] Han, L. H., Li, W., & Bjorhovde, R. 2014. Developments and advanced applications of concrete-filled steel tubular CFST structures: Members. Journal of constructional steel research, 100, 211-228.
[9] Lehman, D. E., & Roeder, C. W. 2012. Foundation connections for circular concrete-filled tubes. Journal of Constructional Steel Research, 78, 212-225.
[10] Moon, J., Lehman, D. E., Roeder, C. W., & Lee, H. E. 2013. Evaluation of embedded concrete-filled tube CFT column-to-foundation connections. Engineering structures, 56, 22-35.
[11] Stephens, M. T., Berg, L. M., Lehman, D. E., & Roeder, C. W. 2016. Seismic CFST column-to-precast cap beam connections for accelerated bridge construction. Journal of Structural Engineering, 1429, 04016049.
[12] Lee, J. R. 2011. Experimental investigation of embedded connections for concrete-filled steel tube columns subjected to combine axial-flexural loading Doctoral dissertation, University of Washington.
[13] Berg, L. M. 2014. CFT column-to-cap beam connections for accelerated bridge construction in seismic regions Doctoral dissertation.
[14] Moon, J., Lehman, D. E., Roeder, C. W., & Lee, H. E. 2013. Evaluation of embedded concrete-filled tube CFT column-to-foundation connections. Engineering structures, 56, 22-35.
[15] Moon, J., Roeder, C. W., Lehman, D. E., & Lee, H. E. 2012. Analytical modeling of bending of circular concrete-filled steel tubes. Engineering structures, 42, 349-361.
[16] Rezaifar, O., & Younesi, A. 2016. Finite element study the seismic behavior of connection to replace the continuity plates in (NFT/CFT) steel columns. Steel and Composite Structures, 21(1), 73-91.
[17] نقی پور، م.، و نعمتی، م.، و جلالی، ج.، و نعمت زاده، م. (1395). تاثیر محصورشدگی فعال و عناصر برشگیر در رفتار خمشی تیر‌های لوله‌ای فولادی پرشده با بتن. مهندسی عمران و محیط زیست (دانشکده فنی), 46(2 (پیاپی 83)), 57-70.
[18] نقی پور، م.، مهدوی، م.، محمد ابراهیم زاده سپاسگزار، ص.، (۱۴۰۰). مدل‌سازی و بررسی رفتار ستونهای مرکب فولادی بتنی دوجداره با جداره داخلی دایره‌ای و جداره خارجی شش ضلعی، فصلنامه مهندسی سازه و ساخت، ۸(۳۹)، ۵۶-۶۹.
[19] Pachideh, G., Gholhaki, M., & Moshtagh, A. 2021. An Experimental Study on Cyclic Performance of the Geometrically Prismatic Concrete-Filled Double Skin Steel Tubular (CFDST) Columns. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 45(2), 629-638.
[20] Pachideh, G., Gholhaki, M., & Moshtagh, A. 2020. Impact of Temperature Rise on the Seismic Performance of Concrete-Filled Double Skin Steel Columns with Prismatic Geometry. Journal of Testing and Evaluation, 49(4).
[21] Dai, X. H., Lam, D., Jamaluddin, N., & Ye, J. 2014. Numerical analysis of slender elliptical concrete filled columns under axial compression. Thin-Walled Structures, 77, 26-35.
[22] Duarte, A. P. C., Silva, B. A., Silvestre, N., De Brito, J., Júlio, E., & Castro, J. M. 2016. Finite element modelling of short steel tubes filled with rubberized concrete. Composite Structures, 150, 28-40.
[23] Ding, F. X., Yin, G. A., Wang, L. P., Hu, D., & Chen, G. Q. 2017. Seismic performance of a non-through-core concrete between concrete-filled steel tubular columns and reinforced concrete beams. Thin-Walled Structures, 110, 14-26.
[24] Li, G., Liu, D., Yang, Z., & Zhang, C. 2017. Flexural behavior of high strength concrete filled high strength square steel tube. Journal of Constructional Steel Research, 128, 732-744.
[25] Yang, Y. F., Wen, Z., & Dai, X. H. 2016. Finite element analysis and simple design calculation method for rectangular CFSTs under local bearing forces. Thin-Walled Structures, 106, 316-329.
[26] Alam, M. I., Fawzia, S., & Zhao, X. L. 2016. Numerical investigation of CFRP strengthened full scale CFST columns subjected to vehicular impact. Engineering Structures, 126, 292-310.
[27] Han, L. H., Tao, Z., & Liu, W. 2001. Concrete filled steel tubular structures from theory to practice [J]. Journal of Fuzhou University Natural Sciences Edtion, 6003.
[28] Tao, Z., Ghannam, M., Song, T. Y., & Han, L. H. 2016. Experimental and numerical investigation of concrete-filled stainless steel columns exposed to fire. Journal of Constructional Steel Research, 118, 120-134.
[29] Li, W., & Han, L. H. 2011. Seismic performance of CFST column to steel beam joints with RC slab: Analysis. Journal of Constructional Steel Research, 671, 127-139.
[30] Tu, Y. Q., Shen, Y. F., Zeng, Y. G., & Ma, L. Y. 2014. Hysteretic behavior of multi-cell T-Shaped concrete-filled steel tubular columns. Thin-Walled Structures, 85, 106-116.
[31] Manual, A. U. 2020. Abaqus user manual. Abaqus.
[32] Hooputra, H., Gese, H., Dell, H., & Werner, H. 2004. A comprehensive failure model for crashworthiness simulation of aluminum extrusions. International Journal of Crashworthiness, 95, 449-464.
[33] Hopperstad, O. S., Børvik, T., Langseth, M., Labibes, K., & Albertini, C. 2003. On the influence of stress triaxiality and strain rate on the behaviour of a structural steel. Part I. Experiments. European Journal of Mechanics-A/Solids, 221, 1-13.
[34] Qiu, W., McCann, F., Espinos, A., Romero, M. L., & Gardner, L. 2017. Numerical analysis and design of slender concrete-filled elliptical hollow section columns and beam-columns. Engineering structures, 131, 90-100.
[35] Zhu, H., Stephens, M. T., Roeder, C. W., & Lehman, D. E. 2017. Inelastic response prediction of CFST columns and connections subjected to lateral loading. Journal of Constructional Steel Research, 132, 130-140.