بررسی انتشار امواج انفجار در محوطه مخازن پتروشیمی و اهمیت فاصله و آرایش مخازن

نوع مقاله : پژوهشی اصیل (کامل)

نویسندگان
گروه مهندسی عمران، دانشکده فنی و مهندسی، دانشگاه هرمزگان، بندرعباس، ایران
چکیده
در حوادث اولیه مانند انفجار در یک محیط پتروشیمی، بسته به فاصله­ی در نظر گرفته شده بین مخازن، انفجار می­تواند مانند اثر دومینو به دیگر مخازن انتقال یابد. در این مطالعه با توجه به ابعاد بزرگ محوطه مخازن پتروشیمی، ابتدا مخازن درجانمایی و فواصل مختلف از هم در مقیاس در نرم­افزار Autodyn مدل­سازی و به بررسی انتشار امواج انفجار و محصور شدگی فشار 8 گرم TNT در محیط بین مخازن پرداخته­شده است. در ادامه به بررسی تاثیر شکل دیوار­های ضد انفجار مختلف در کاهش فشار انفجار و نحوه برخورد موج ناشی از 1000 کیلوگرم TNT در فاصله سرد 20 متر به یک مخزن پتروشیمی در مقیاس واقعی پرداخته شده است. نتایج نشان می­دهد که استفاده از ­روابط نیمه­تجربی آیین­نامه UFC-0-340-02 در محیط­های بسته به دلیل تشدید اضافه فشار انفجار غیرمحافظه­کارانه است. همچنین بهترین شیوه جانمایی مخازن در این بررسی، آرایش زیگزاکی با در نظر گرفتن فاصله­ای 2 برابر فاصله ایمن بین مخازن از آیین­نامه NFPA-30 است. علاوه بر این، نتایج نشان می­دهد با ایجاد مانع در برابر انفجار می­توان تا حد زیادی انفجار را کاهش داد اما شکل مانع تاثیر چندانی را ایجاد نمی­کند.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Investigation propagation of blast waves on storage tank farm and the importance of safe distance and position of storage tank

نویسندگان English

Mohammad Reza Mohammadizadeh
Ali Seifinia
Department of Civil Engineering, Faculty of Technical and Engineering, University of Hormozgan, Bandar Abbas, Iran
چکیده English

The most important danger that threatens a petrochemical refinery is an explosion, which is followed by a fire or vice versa. In fact, the occurrence of initial events such as explosions and fires spread from one part to another like the domino effect if the distance between the storage tanks is not sufficiently considered. Therefore, the distance and arrangement of petrochemical storage tank can play an important role in reducing the damage of initial accidents. So far, due to the explosion uncertainties, no definitive solution has been offered, but a combination of active and passive techniques such as the efficient use of intelligence and security organizations, increasing the scaled distance between the detonation point and the target buildings or providing physical barriers, the use of deformable materials to absorb energy, and the use of appropriate retrofit structural techniques can reduce the effects of explosions. As it turns out, it is virtually impossible to study the propagation of blast waves experimentally on a large scale due to financial constraints and potential hazards. Therefore, to solve this problem, two solutions are proposed: the use of small-scale laboratory methods and the use of numerical methods. Three-dimensional numerical analysis is an efficient method for investigating structural weaknesses, hazard risk analysis, and evaluating of explosion hazard points. In this study, with the help of explosion simulation by Eulerian-Lagrangian coupling method, the research has been surveyed in two parts. In the first part, petrochemical tanks in different arrangements, and,at different distances from each other are modeled in 3D on Autodyn software on the scale of and the propagation of explosion waves and the confinement of 8g of TNT pressure in the environment between the tanks are investigated. In the second part, the effect of barrier shape on reducing the blast pressure of 1000 kg of TNT on a real scale has been investigated. The results show that the use of semi-empirical relation in UFC-0-340-02 to determine the blast pressure is applicable only to open environments, and it is not precise in closed environments due to the confinement of the blast pressure. Moreover, the results show that it is not conservative to use the required distance between tanks considering the amounts proposed by the regulations. As a result, increasing the distance up to twice the amount proposed by the regulations, the effect of explosion pressure confinement is eliminated. The best way to position the tanks in this study is a zigzag pattern with a distance equal to twice the safe distance between the tanks in accordance with NFPA-30. In addition, the results show that by creating a barrier against the explosion, the explosion over-pressure can be greatly reduced, but the shape of the barrier does not have much effect. Although, using the Eulerian-Lagrangian coupling method requires considerable time and appropriate software to perform the calculations, it provides a comprehensive understanding of the blast wave interaction with structures. With the advancement of technology and the use of parallel processing in the cloud space, and the mapping technology it is possible to evaluate the different structures on a real scale against the explosion.

کلیدواژه‌ها English

Propagation
Petrochemical facilities
AUTODYN
Blast-wave
TNT
1. Nolan DP. Handbook of fire and explosion protection engineering principles: for oil, gas, chemical and related facilities. William Andrew; 2014.
2. United state Department of Defence. Structures to resist the effects of accidental explosions. UFC 3-340-02. 2008;
3. Badshah E, Naseer A, Ashraf M, Shah F, Akhtar K. Review of blast loading models, masonry response, and mitigation. Shock Vib. 2017;2017.
4. Association NFP. Flammable and Combustible Liquids Code...: NFPA 30. National fire protection Association; 2014.
5. Zintilis GM, Fairlie GE. Protection of commercial buildings against blast and ballistic threats. In: 7th international symposium on interaction of the effects of munitions with structures, Mannheim. 1995. p. 13–22.
6. Walley F. The Effect of Explosions on structures. Proc Inst Civ Eng Build. 1994;104(3):325–34.
7. Feng LJ. Modelling blast in urban area. Cranf Univ Weapons Eff Struct MSc Proj R Mil Coll Sci Shirivenham, UK. 1997;
8. Smith PD, Whalen GP, Feng LJ, Rose TA. Blast loading on buildings from explosions in city streets. Proc Inst Civ Eng Build. 2001;146(1):47–55.
9. Birnbaum NK, Clegg RA, Fairlie GE, Hayhurst CJ, Francis NJ. Analysis of blast loads on buildings. In: Century Dynamics Incorporated, ASME Pressure Vessels and Piping Conference, Structures Under Extreme Loading Conditions. 1996.
10. Remennikov AM, Rose TA. Modelling blast loads on buildings in complex city geometries. Comput Struct. 2005;83(27):2197–205.
11. Shi Y, Li Z, Hao H. Mesh size effect in numerical simulation of blast wave propagation and interaction with structures. Trans Tianjin Univ. 2008;14(6):396–402.
12. Army TM, Force A. TM 5-1300. Struct to Resist Eff Accid Explos. 1990;
13. Wesevich J, Hassig P, Nikodym L, Nasri V, Mould J. Accounting for channeling and shielding effects for vapor cloud explosions. J Loss Prev Process Ind. 2017;50:205–20.
14. Fedorova NN, Valger SA, Zakharova Y V. Simulations of blast wave propagation in open and closed space. In: ECCOMAS Congress 2016-Proceedings of the 7th European Congress on Computational Methods in Applied Sciences and Engineering. 2016. p. 7557–71.
15. Qi S, Zhi X, Fan F, Flay RGJ. Propagation behaviour of a hemispherical blast wave on a dome roof. Eng Struct. 2020;212:110524.
16. Qi S, Zhi X, Fan F, Flay RGJ. Probabilistic blast load model for domes under external surface burst explosions. Struct Saf. 2020;87:102004.
17. Chi M, Jiang H, Lan X, Xu T, Jiang Y. Study on overpressure propagation law of vapor cloud explosion under different building layouts. ACS omega. 2021;
18. Bangash MYH. Shock, impact and explosion. Springer Berlin Heidelberg; 2009.
19. Nellis WJ, Mitchell AC, Ree FH, Ross M, Holmes NC, Trainor RJ, et al. Equation of state of shock‐compressed liquids: Carbon dioxide and air. J Chem Phys. 1991;95(7):5268–72.
20. Lee E, Finger M, Collins W. JWL equation of state coefficients for high explosives. Lawrence Livermore National Lab.(LLNL), Livermore, CA (United States); 1973.
21. Val’ko VV, Obraz OP, Gasilov VA, Solovyova VS, Savenko NO. Equations of state for detonation products of explosives. Keldysh Inst Prepr. 2021;(51):1–38.