یک روش غیرمخرب جدید در تعیین نیروی پیش‌تنیدگی در تیرهای پیش‌تنیده بر اساس پاسخ‌های استاتیکی با استفاده از الگوریتم ژنتیک

نوع مقاله : پژوهشی اصیل (کامل)

نویسندگان
1 عضو هیات علمی
2 دانشگاه تربیت دبیر شهید رجایی
چکیده
مسئله تعیین نیروی پیش‌تنیدگی در تاندون‌های سازه­های بتنی پیش­تنیده و پایش عدم تجاوز افت پیش­تنیدگی از مقادیر مجاز، مسئله‌ای است که در طول دهه‌های گذشته محققان بسیاری به آن پرداخته‌ و روش‌هایی در این زمینه ارائه کرده‌اند. امروزه به منظور پایش افت پیش­تنیدگی، حسگرهایی پیش از نصب، در سازه­های بتنی پیش­تنیده مهم تعبیه میشود. لیکن نظر به عدم پیش­بینی تجهیزاتی از این دست در سازه­های قدیمی، پایش این نیروها، مستلزم آزمایشات مخرب ویا غیرمخرب اما کم­دقت است. لذا در این نوشتار، روشی ارائه شده است که بدون نیاز به حسگرهای موصوف و آزمایشات مخرب، تنها با اندازه­گیری تغییرمکان­های استاتیکی، قادر به تشخیص میزان افت پیش­تنیدگی در تاندون­های مقطع یک تیر بتنی پیش­تنیده میباشد. در این راستا الگوریتمی در محیط برنامه Python و مبتنی بر الگوریتم ژنتیک و همچنین مدلسازی در برنامه تحلیل اجزای محدود فراهم شده است. مثال عددی ارائه شده در این تحقیق نشان میدهد، الگوریتم پیشنهادی مقادیر افت پیش­تنیدگی را حتی با وجود ده­درصد خطای عمدی ناشی از اندازه­گیری، با دقت مطلوبی شناسایی میکند.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

A novel non-destructive method to determination of prestressing force in prestressed beams based on static responses using genetic algorithm

نویسندگان English

Mussa Mahmoudi 1
mohamad ghasem sahab 1
mohamad sharifi bagherin 2
1 Faculty member
2 Student
چکیده English

The problem of determining the prestressing force in the tendons of prestressed concrete structures and monitoring the non-exceedance of prestressing drops is an issue that has been addressed by many researchers over the past decades and has provided methods in this field. Today, pre-installation sensors are installed in important prestressed concrete structures to monitor prestressing loss. However, due to the unpredictability of such equipment in older structures, monitoring of these forces requires destructive or non-destructive testing but is inaccurate. Therefore, in this paper, a method is presented that without the need for these sensors and destructive tests, only by measuring static displacement, is able to detect the amount of prestressing loss in the cross-sectional tendons of a prestressed concrete beam. In this regard, an algorithm in the Python program environment based on genetic algorithm as well as modeling in the finite element analysis program is provided. The numerical example presented in this research shows that the proposed algorithm detects the values ​​of prestressing loss with good accuracy even in spite of 10% of the intentional error due to measurement. In recent years, the use of prestressing methods has become much simpler and more effective, and its materials have been optimized. Today, a high percentage of structures under construction worldwide are built using this technology, and the advance has found wide applications in the construction of office buildings, residential, commercial, parking lots, sports stadiums, concrete tanks and special structures such as piers. Therefore, in recent years, for long-term monitoring of prefabricated structures, equipment and sensors sensitive to force drop, such as fiber optic sensors and FBG sensors in the construction phase are predicted and installed in the desired locations. [13] However, since the above equipment requires a lot of money and it is not possible to use them in old structures, the need for a technique that shows the amount and location of force reduction in all tendons without using them remains. Therefore, in this paper, a method is presented that, while using the simplest tools, provides the most accurate results only by measuring static displacements under the effect of various loading scenarios and using an artificial intelligence algorithm based on genetic algorithm. The proposed method is based on computer analysis and comparison of the results of two prestressed concrete beams with the same geometry, loading and arrangement of tendons. First, a specific prestressing beam is modeled in the SAP2000 analysis program and the desired prestressing forces are applied to it, and then these forces are reduced in some of the studied tendons. This deliberate change in prestressing values ​​is considered as failure and the technique presented in this mapping tries to discover the extent and location of failure of this beam. In other words, this paper is the determination of the amount of prestressing force in prestressed concrete beams in which force measuring sensors are not predicted without the need for destructive testing and only by measuring the static displacement under load. In the form of a numerical example on a prestressed concrete beam consisting of 6 steel tendons and using a genetic algorithm, it was shown that the displacement is a function of the amount of prestressing and its location and amount of reduction by the technique used. It was correctly detected with 93% accuracy when 10% of the deliberate error due to displacement field measurement was applied. As a suggestion for future work, this research will be able to be developed in the simultaneous diagnosis of prestressing reduction and beam concrete failure.

کلیدواژه‌ها English

Health Monitoring
prestress force
prestressed beam
static response
genetic algorithm
[1] Tabatabai, H. and Dickson, T.J., 1993. “The history of the prestressing strand development length equation”. PRECAST/PRESTRESSED CONCRETE INSTITUTE. JOURNAL, 38(6).
[2] Salem, H. M., & Helmy, H. M. (2014). “Numerical investigation of collapse of the Minnesota I-35W bridge”. Engineering Structures, 59, 635-645.
[3] Davis, A. G., Ansari, F., Gaynor, R. D., Lozen, K. M., Rowe, T. J., Caratin, H., ... & Sansalone, M. J. (1998). “Nondestructive test methods for evaluation of concrete in structures. American Concrete Institute”, ACI, 228.
[4] McCann, D. M., & Forde, M. C. (2001). “Review of NDT methods in the assessment of concrete and masonry structures”. Ndt & E International, 34(2), 71-84.
[5] Park, S., Stubbs, N., Bolton, R., Choi, S., & Sikorsky, C. (2001). “Field verification of the damage index method in a concrete box‐girder bridge via visual inspection”. Computer‐Aided Civil and Infrastructure Engineering, 16(1), 58-70.
[6] Sohn, H., Dutta, D., Yang, J. Y., DeSimio, M., Olson, S., & Swenson, E. (2011). Automated detection of delamination and disbond from wavefield images obtained using a scanning laser vibrometer. Smart Materials and Structures, 20(4), 045017.
[7] Solla, M., Lorenzo, H., Novo, A., & Caamaño, J. C. (2012). Structural analysis of the Roman Bibei bridge (Spain) based on GPR data and numerical modelling. Automation in Construction, 22, 334-339.
[8] Abraham, M. A., Park, S., & Stubbs, N. (1995, April). Loss of prestress prediction based on nondestructive damage location algorithms. In Smart Structures and Materials 1995: Smart Systems for Bridges, Structures, and Highways (Vol. 2446, pp. 60-67). International Society for Optics and Photonics.
[9] Cha, Y. J., & Buyukozturk, O. (2015). Structural damage detection using modal strain energy and hybrid multiobjective optimization. Computer‐Aided Civil and Infrastructure Engineering, 30(5), 347-358.
[10] Shiravand, M. R., & Parvanehro, P. (2017). Numerical study on damage mechanism of post-tensioned concrete box bridges under close-in deck explosion. Engineering Failure Analysis, 81, 103-116.
[11] Tonnoir, B., Carde, C., & Banant, D. (2018). Curvature: An Indicator of the Mechanical Condition of Old Prestressed Concrete Bridges. Structural Engineering International, 28(3), 357-361.
[12] Li, H., Lv, Z., & Liu, J. (2013). Assessment of prestress force in bridges using structural dynamic responses under moving vehicles. Mathematical Problems in Engineering, 2013.
[13] Chen, S. Z., Wu, G., Xing, T., & Feng, D. C. (2017). Prestressing force monitoring method for a box girder through distributed long-gauge FBG sensors. Smart Materials and Structures, 27(1), 015015.
[14] Eiben, A. E., & Smith, J. E. (2015). What is an evolutionary algorithm?. In Introduction to Evolutionary Computing (pp. 25-48). Springer, Berlin, Heidelberg.
[15] Sivanandam, S. N., & Deepa, S. N. (2008). Genetic algorithms. In Introduction to genetic algorithms (pp. 15-37). Springer, Berlin, Heidelberg.
[16] Sahab, M. Gh., (2015). Determination of prestressing force in prestressed concrete beams based on damage detection methods and laboratory validation, 10th International Congress of Civil Engineering, Tabriz, Iran “(In Persian)”.
[17] Pellegrino, C., Zanini, M. A., Faleschini, F., & Corain, L. (2015). Predicting bond formulations for prestressed concrete elements. Engineering Structures, 97, 105-117.




































.