بررسی خواص مکانیکی بتن آهکی-پوزولانی حاوی دوده سیلیس، سرباره کوره ذوب آهن و زئولیت

نوع مقاله : پژوهشی اصیل (کامل)

نویسندگان
1 دانشیار مهندسی عمران، دانشکده مهندسی عمران و محیط زیست، دانشگاه تربیت مدرس
2 دانشجو کارشناسی ارشد مهندسی سازه، دانشکده عمران و محیط زیست، دانشگاه تربیت مدرس
چکیده
امروزه به دلیل اثرات زیست محیطی مضر تولید سیمان پرتلند، تحقیق در مورد چسباننده­های آهکی-پوزولانی به عنوان جایگزین سیمان، به صورت مدرن مورد توجه قرار گرفته است. در این تحقیق با هدف رسیدن به خواص مطلوب برای بتن با چسب غالب آهکی-پوزولانی، بتن­های مختلف با ترکیبات دوگانه و سه­گانه از آهک هیدرولیکی با دوده سیلیس، سرباره کوره ذوب آهن و زئولیت و 2 نسبت با ترکیب 30% سیمان پرتلند با آهک و پوزولان، به همراه بتن معمولی ساخته شد و مورد آزمایش قرار گرفت. برای بهبود کارایی بتن از فوق روان­کننده در همه مخلوط­ها استفاده شد. نسبت آب به چسباننده بتن برای همه نمونه­ها برابر 35/0 بود، به استثنای نمونه­های حاوی زئولیت که با توجه به عدم امکان ساخت در نسبت کم، برابر 45/0 در نظر گرفته شد. آزمایش اسلامپ روی بتن تازه و مقاومت فشاری در سنین 7، 28 و 56 روزه، مقاومت کششی دو نیم شدن در سن 28 روزه و مقاومت خمشی در سنین 14 و 28 روزه بر روی بتن­های سخت شده انجام گرفت. نتایج اسلامپ نشان داد که استفاده از فوق روان­کننده در بتن­های آهکی-پوزولانی، موجب ارتقای کارایی آنها می­شود که بیشترین اسلامپها در بتن آهکی سیمانی سرباره­ای و آهکی سیلیسی سرباره­ای به ترتیب برابر 23 و 22 میلی­متر به دست آمد. از نتایج مقاومتی بتن­های آهکی-پوزولانی نیز مشخص شد که 4 نسبت مخلوط (دو نسبت شامل 50% آهک و 30% سیمان پرتلند با 20% دوده سیلیس یا 20% سرباره و یک نسبت با ترکیب 50% آهک، 25% دوده سیلیس و 25% سرباره و دیگری با ترکیب 70% آهک و 30% دوده سیلیس) با کسب بیشترین مقاومت فشاری، کششی و خمشی، خواص قابل رقابتی را با بتن معمولی نشان دادند و مقاومت فشاری 28 روزه آنها بیش از MPa30 (به ترتیب برابر MPa 6/58، 40.2، 40.1 و 33.5) به دست آمد. با انجام آنالیز حرارتی روی نمونه­های بتنی مشخص شد که به طور کلی در بتن آهکی-پوزولانی، دوده سیلیس با مصرف بیشتر کلسیم هیدروکسید فعال­تر از سرباره کوره ذوب آهن عمل می­کند و هردوی آنها از زئولیت فعال­تر هستند.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Evaluation of mechanical properties of lime-pozzolan concrete containing silica fume, blast furnace slag and zeolite

نویسندگان English

abolfazl arabzadeh 1
ali ahmadi 2
1 Associate Professor of Civil Engineering, Faculty of Civil and Environmental Engineering, Tarbiat Modares University
2 Master student of Structural Engineering, Faculty of Civil Engineering and Environment, Tarbiat Modares University
چکیده English

Growing apprehension about the environmental effects of producing Portland cement as the main component of the concrete, has raised widespread concerns in construction industry about the urgency of finding appropriate materials to substitute it. Recently, lime-pozzolan binders that were used before the advent of Portland cement, have been revived and reconsidered in a quite modern way showing reliable properties.

In this study, according to past research on lime-pozzolan concrete, with the aim of producing concrete having dominant lime-pozzolan binder with desirable structural properties, different lime-pozzolan concrete mixes with double and triple compounds of hydraulic lime with silica fume, blast furnace slag and zeolite and two mixes with the presence of 30% Portland cement in lime-pozzolan concrete were made and tested. In all mixes, the super-plastisizer admixture was used to improve the concrete workability. To gain the most concrete strength, a constant water to binder ratio of 0.35 was used for manufacturing all concretes specimens except the one containing zeolite in which water to binder ratios lower than 0.45 wasn’t practical. Portland cement binder concrete were manufactured as well for comparing purposes. Slump test was conducted on fresh concrete and compressive strength test on cubic molds (10×10×10 cm) in 7, 28 and 56 days, spilling tensile strength test on cylindrical molds (with a diameter of 10cm and a height of 20cm) in 28 days, flexural strength test on prismatic templates (10×10×35 cm) in 14 and 28 days and elastic modulus test on cylindrical molds (with a diameter of 10cm and a height of 20 cm) in 28 days was conducted on hardened concretes. To analyze pozzolanic activity,the Thermal Gravimetric Analysis (TGA) was performed on concrete samples which showed better strength results than others.

Slumpchr('39')s results show that the use of the super-plastisizer in the lime-pozzolan concrete improves their workability; Most slumps were obtained in lime-slag-silica and lime-slag-cement concrete at 22 and 23 mm, respectively. Four mixes of lime-pozzolan concrete (two mixes with 50% natural hydraulic lime (NHL) composition and 30% cement with 25% silica fume (SF) or 25% ground granulated blastfurnace slag (GGBS) and two other triple mixes 50% NHL, 25% SF and 25% GGBS and dual mixes 70% NHL with 30% SF) showed competitive mechanical properties compared to ordinary concrete and their 28-day compressive strength were achieved above 30 MPa (Equivalent to 58.6, 40.2, 40.1 and 33.5 MPa, respectively), which is quite favorable to be used as structural concrete. Concrete containing zeolite had less mechanical strength than others.

The results of thermal gravimetric analysis were determined in the lime-pozzolan concrete, more calcium hydroxide is consumed as the amount of pozzolan increases. Silica fume performed more active than blast furnace slag, because it consumed more calcium hydroxide in concrete. Also blast furnace slag was more active than zeolite.

کلیدواژه‌ها English

Mechanical properties
concrete
Cement
Hydraulic lime
Pozzolan
[1] Grist, E.R., Paine, K.A., Heath, A.; “Hydraulic lime – pozzolan concretes: Properties, uses and research needs”. In: 9th ICC: Environment, Efficiency and Economic Challenges for concrete. Dundee, pp. 314-326, 2016.
[2] Velosa, A., Cachim, P.; Hydraulic-lime based concrete: Strength development using a pozzolanic addition and different curing conditions. Journal of Construction and Building Materials, vol. 23, no. 5, pp. 2107-2111, 2009.
[3] Velosa, A., Cachim, P., Rocha, F.; “Effect of Portuguese metakaolin on hydraulic lime concrete using different curing conditions”. Journal of Construction and Building Materials, vol. 24, no. 1, pp. 71-78, 2010.
[4] Grist, E.R., et al.; “Compressive strength development of binary and ternary lime–pozzolan mortars”. Journal of Materials and Design, vol. 52, pp. 514-523, 2013.
[5] Grist, E.R., et al.; ”Structural and durability properties of hydraulic lime–pozzolan concretes”. Journal of Materials and Design, vol. 62, pp. 212-223, 2015.
[6] Grist, E.R., et al.; “The environmental credentials of hydraulic lime-pozzolan concretes”. Journal of Cleaner Production, vol. 93, pp. 26-37, 2015.
[7] ASTM, (2001), ASTM C136, Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates, West Conshohocken, P.A., USA.
[8] National Iranian Standard No. 4738, Hydraulic Hydraulic Lime for Construction Use - Properties and Test Methods, Tehran, Iran: National Iranian Standards Organization, In Persian.
[9] ASTM, (2015), ASTM C1240, Standard Specification for Silica Fume Used in Cementitious Mixtures, West Conshohocken, P.A., USA.
[10] National Iranian Standard No. 1-21319, High Furnace Slag Powder for Concrete, Mortar and Cement Mortar for Use in Concrete (Part 1-Definitions, Properties and Adaptation), National Iranian Standards Organization, Tehran, 2016, in Persian.
[11] ASTM, (2012), ASTM C618, Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use as a Mineral Admixture in Concrete, West Conshohocken, P.A., USA.
[12] Ellison, P.T., Hydraulic Lime Mortars, Masters Thesis, University of Pennsylvania, Philadelphia, PA., 1998.
[13] Mostofi Nejad, Davood; Concrete Mixing Technology and Design; Arkan Publications, Isfahan, Ninth Edition, 2005, In Persian.
[14] ASTM, (2002), ASTM C192, Standard Practice for Making and Curing Concrete Test Specimens in the Laboratory, West Conshohocken, P.A., USA.
[15] ASTM, (2015), ASTM C143C1 M-15a, Standard Test Method for Slump of Hydraulic-Cement Concrete, West Conshohocken, P.A., USA.
[16] ASTM, (1990), ASTM C116, Standard Test Method for Compressive Strength of Concrete Using Portions of Beams Broken in Flexure, West Conshohocken, P.A., USA.
[17] ASTM, (2004),ASTM C496, Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens, West Conshohocken, P.A., USA.
[18] ASTM, (2016), ASTM C293, Standard Test Method for Flexural Strength of Concrete (Using Simple Beam With Center-Point Loading), West Conshohocken, P.A., USA.
[19] ASTM, (2010), ASTM C469, Standard Test Method for Static Modulus of Elasticity and Poisson’s Ratio of Concrete in Compession, West Conshohocken, P.A., USA.
[20] ACI, (2014), ACI 318, Building Code Requirements for Structural Concrete, American Concrete Institute. Farmington Hills, M.I., USA.