کاربرد شتابنگاشت‌های مصنوعی در براورد تقاضای لرزه‌ای سیستم‌های یک درجه آزاد: از ارزیابی تا تصحیح روابط پیشنهادی آیین نامه‌های لرزه‌ای

نوع مقاله : پژوهشی اصیل (کامل)

نویسندگان
گروه مهندسی زلزله و ژئوتکنیک، دانشکده مهندسی عمران و نقشه برداری، دانشگاه تحصیلات تکمیلی صنعتی و فناوری پیشرفته
چکیده
در این مقاله، به بررسی کاربرد شتابنگاشت‌های مصنوعی در براورد تقاضا در سیستم‌های تک درجه آزاد و ارزیابی دقت روابط تجربی ارائه ‌شده در استاندارد 2800 ایران – ویرایش چهارم و نشریه 360، به‌منظور تخمین حداکثر تقاضا در سازه، پرداخته‌شده است. در این راستا، سیستم‌های یک درجه آزاد با رفتار غیر خطی الاستیک – پلاستیک مطلق و با زمان تناوب 1/0 تا 0/2 ثانیه و ضریب کاهش مقاومت بین 2 تا 8، به عنوان سیستم سازه‌ای در نظر گرفته می‌شوند. سیستم‌های یک درجه آزاد تحت شتاب‌نگاشت‌های مصنوعی که براساس توابع پوش مختلفی نظیر؛ مرکب، نمایی و ساراگونی-هارت تولیدشده، مورد تحلیل تاریخچه زمانی قرار می‌گیرند و نتایج حاصل از انجام تحلیل تاریخچه زمانی با روابط تخمینی ارائه‌شده در استاندارد 2800 ایران - ویرایش چهارم و نشریه 360، مقایسه می‌شوند. بر اساس نتایج به‌دست‌آمده، مشاهده می‌شود که روابط هر دو آیین‌نامه در Rμ=2 به‌درستی عمل نموده ولی برای Rμ های بالاتر دست پایین عمل می‌کند و دارای دقت کمتری می‌باشد. به همین منظور در ادامه مقاله روشی برای اصلاح روابط آیین نامه جهت برآورد بهتر سطح تقاضا لرزه‌ای سازه ارائه گردیده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Artificial earthquakes in seismic demand estimation of SDOF systems: From evaluation to the correction of the proposed equations in the seismic codes

نویسندگان English

Farshad Homaei
Mohsen Bahramjerdi
Department of Earthquake and Geotechnical Engineering, Faculty of Civil and Surveying Engineering, Graduate University of Advanced Technology, Kerman, Iran
چکیده English

Seismic design codes provide different equations for estimating displacement demands in various buildings and structures. Such equations were usually obtained by performing regression analysis over the obtained data from numerical models under different nonlinear analyzes. On the other hand, the application of artificial earthquakes is allowed to be considered for design and demand assessment in structures when there is a lack of suitable ground motions for a specific region and site. Since the accuracy of such relations affects the reliability of demand estimating in structures, it is required to assess the efficiency of such predictive relations. Moreover, it is essential to assess the efficiency of those relations for artificially generated earthquakes. Hence, in this study, the estimated demands from the design and assessment codes relations are evaluated for artificially generated ground motions. In this regard, regulations in the fourth edition of the Iranian seismic design code (also known as Standard 2800) and the last revision of the Iranian seismic evaluation code of practice (also known as Code-360) are considered. Estimated demands from these codes are compared to the results from the nonlinear time-history analysis of a group of single degree of freedom (SDOF) systems. Although an SDOF system can not represent the complete behavior of a complex building, for the low to medium-rise buildings with a fundamental vibration first mode, such an idealization is acceptable. In this regard, a group of SDOF systems with the elastic-perfectly-plastic (EPP) nonlinear behavior was considered. SDOF systems have vibration periods between 0.1s to 2.0s (as low to medium-rise buildings) with strength reduction factors (Rμ) of 2 to 8 to cover most of the common lateral resisting systems. These systems were analyzed under the action of 24 artificially generated ground motion records. Earthquake records were generated based on three different envelop shapes including compound shape, exponential shape, and Saragoni and Hart shape. These envelop shapes are representing the general form of an earthquake accelerogram and try to impose the real characteristics of an earthquake on the generated record. After employing the time-history analysis on each SDOF system, the mean of the maximum displacement demands of SDOF systems was obtained and compared to those from the estimating equations in Standard 2800 and Code-360. It is observed that estimated demands from Standard 2800 are closer to those from time-history analysis when compared with the obtained results from Code-360. Among the considered strength reduction factors, it was observed that SDOF systems with larger Rμ lead to a higher difference between the time-history results and those from codes. This is more predominant over the period range of 0.1s to 0.8s. So, relations in both codes are required to be modified for better demand estimating. In this regard, a method is proposed for modifying the available equations in the prementioned codes to accurately predict the displacement demands in systems under the action of artificially generated ground motions. A comparison between the results from the modified equations and those from the nonlinear time-history analysis shows the efficiency of the proposed method.

کلیدواژه‌ها English

Artificial ground motion
Envelop function
Time-history analysis
Demand estimation
Single degree of freedom system
[1] MacCann WMaS, H.C. Determining strong-motion duration of earthquake. Bulletin of the Seismological Society of America. 1979;Vol. 69:1253-65.
[2] Fereydouni H. Review and Production of Artificial Accelerograms and its Associated Parameters. University of Tehran, Faculty of Engineering. 1999;MSc Thesis.
[3] G.W.Housner. Simulation of strong ground motion records by transient stochastic processes. Earthquake Engineering & Structural Dynamics. 1947;vol.90:113-52.
[4] J.L.Bohdanoff JEG, M.C.Bernard. Response of structures to random earthquake movements. 1961;vol.46:PP.143-5.
[5] Bicraft.F. Displays the white noise of earthquakes. Earthquake Spectra. 1960;vol.5.
[6] P.C.Jennings GWH. Simulated earthquake movements. 1968;vol.57:PP.287-303.
[7] Maria T. Comparison of linear and nonlinear dynamic responses of structures under natural and artificial accelerograms. 2007;Vol. 8:pp. 281–98.
[8] G.Ghodrati Amiri AA. Generation of earthquake acceleration by wavelet transform. Center of Excellence for Fundemental Studies in Structurs Engineering. 2006;Cllege of Civil Engineering, Iran University of Science & Tecnology.
[9] G.Ghodrati Amiri AB. Generation of earthquake acceleration mapping using coronary canopy model and wavelet analysis. Cllege of Civil Engineering, Iran University of Science & Tecnology. 2010.
[10] S. Hashemi and A. Habibi. Evaluation and comparison of real, artificial near-fault earthquakes. Faculty of Civil Engineering, Amir Kabir University .Tehran, Iran. 10. 2019.
[11] Jin-Ting Wang, Ai-Yun Jin, Xiu-Li Du, Ming-Xin Wu. Scatter of dynamic response and damage of an arch dam subjected to artificial earthquake accelerograms. Soil Dynamics and Earthquake Engineering. 2020 ;Vol 87. p.p 93-100. ISSN 0267-7261.
[12] Ghodrati Amiri.G, Amidi.R. Effects of reduction in stiffness and strength in the displacement coefficient method, FEMA 356 (FEMA, 2000). Faculty of Civil Engineering, Tehran University of Science and Technology, Iran. 2010.
[13] R. Sadri, H. Fakharian, R. Dehghan. Reduce the seismic need of high-rise steel frames by changing the convergent bracing at the height of the structure. New Technologies in Structures Research Group. 2020.
[14] Parsaiyan.H, Moslemi.S. Statistical studies on the ratio of inelastic to elastic deformation in the method of displacement coefficients Instructions for seismic improvement of existing buildings (Journal 360). Journal of International Scholarly Research Network, Civil Engineering. 2008.
[15]V. Mohseniana, N.Gharaei-Moghaddamb, I. Hajirasouliha. Multilevel seismic demand prediction for acceleration-sensitive nonstructural components. Engineering Structures. 2021.
[16] Francesca R. Cinti and Daniela Pantosti and Anna Maria Lombardi and Riccardo Civico. Modeling of earthquake chronology from paleoseismic data: Insights for regional earthquake recurrence and earthquake storms in the Central Apennines. Tectonophysics, Vol 816. 2021.
[17] Road HaUDRC. Iranian code of practice for seismic resistant design of buildings, Standard 2800 (4th edition). Tehran, Iran: BHRC; 2014.
[18] Office of Deputy for Strategic Supervision DoTA. Instruction for Seismic Rehabilitation of Existing Buildings No. 360. 2014.
[19] Engineers ASoC. Minimum Design Loads For Buildings and Other Structures. ASCE/SEI 7. Reston, Virginia: American Society of Civil Engineers; 2017.
[20] Gasparini DA VE. Simulated earthquake motions compatible with prescribed response spectra. Research Report R76-4 Department of Civil Engineering, Massachusetts Institute of Technology, Cambridge, MA. 1976.
[21] MK K. Stochastic characterization of earthquakes through their response spectrum. Earthquake Engineering and Structure Dynamic. 1978 97–509.
[22] Iyengar RN RP. Generation of spectrum compatible accelerograms. Earthquake Engineering & Structural Dynamics. 1979:253–63.
[23] Cacciola P CP, Muscolino G. Combination of modal responses consistent with seismic input representation. Journal Structure Engineering. 2004:47.
[24] Rezaeian S DKA. Simulation of synthetic ground motions for specified earthquake and site characteristics. Earthquake Engineering & Structural Dynamics. 2010:1155–80.
[25] Zentner I PF. Enrichment of seismic ground motion databases using Karhunen–Loeve expansion. Earthquake Engineering & Structural Dynamics. 2018:1945–57.