پاسخ لرزه‌ای و خرابی پیشرونده سازه‌های قاب خمشی فولادی نامنظم در پلان مجهز به میراگرهای تسلیم شونده TADAS

نوع مقاله : پژوهشی اصیل (کامل)

نویسندگان
1 گروه مهندسی عمران، دانشکده فنی و مهندسی، دانشگاه آزاد اسلامی واحد اصفهان (خوراسگان)، اصفهان
2 استادیار گروه مهندسی عمران، دانشکده فنی و مهندسی، دانشگاه آزاد اسلامی واحد اصفهان (خوراسگان)، اصفهان
چکیده
پژوهش­های گوناگونی در زمینه خرابی پیشرونده ناشی از بارگذاری غیرعادی نظیر انفجار صورت پذیرفته است و سیستم­های مقاوم متعددی در این زمینه مورد ارزیابی قرار گرفته است. هدف اصلی این پژوهش بررسی تاثیر بکارگیری میراگر تسلیم شونده فلزی Triangular Added Damping And Stiffness (TADAS) به منظور بالا بردن ظرفیت سازه­های نامنظم سه و نه طبقه نامنظم در برابر زلزله و خرابی پیشرونده خواهد بود. به این منظور با توجه به نیاز سازه از میراگر فلزیTADAS به جهت بهبود عملکرد لرزه­ای آن بهره گرفته شده است. سپس به منظور ارزیابی عملکرد این میراگر در بهبود ظرفیت سازه در برابر خرابی پیشرونده، سناریوهای مختلف بحرانی جهت حذف ستون انتخاب و ظرفیت سازه با استفاده از آنالیز تاریخچه زمانی غیرخطی توسط نرم افزار SAP2000 مورد ارزیابی قرار گرفته است. به منظور ارزیابی غیرخطی سازه، رفتار غیرخطی تیرها با استفاده از مفصل پلاستیک و به منظور در نظر گرفتن اندرکنش غیرخطی نیروی محوری و لنگر خمشی از مدل فایبر برای رفتار غیرخطی ستون­ها استفاده شده است. مدل­سازی میراگرها نیز با استفاده از المان لینک در نرم افزار و تخصیص دادن مدل غیرخطی WEN به آن انجام پذیرفته است. به منظور ارزیابی عملکرد لرزه­ای سیستم میراگر از تحریکات پالس­گونه بهره گرفته شده است. نتایج ارائه شده نشان دهنده موفقیت بالای 40 درصدی در کاهش جابجایی نسبی میان طبقه­ای می­باشد. افزایش حداقل 15 درصدی وحداکثر 100 درصدی ظرفیت سازه مجهز به میراگر تسلیم شونده در برابر خرابی پیشرونده از دیگر نتایج این تحقیق می‌باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Seismic Response, Progressive Collapse Capacity of Irregular Buildings equipped with TADAS Damper

نویسندگان English

ali Pourmolaabasi 1
Mohammad Mahdi Zafarani 2
mohamad sadegh birzhandi 2
1 Department of Civil Engineering, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
2 Department of Civil Engineering, Isfahan (Khorasgan) Branch, Islamic Azad University, Isfahan, Iran
چکیده English

In recent years, the use of supplemental damping devices to increase the capacity of structures against progressive failure due to explosion has received less attention. The main purpose of this research is to investigate the effect of using Triangular yielding metal damper called TADAS. in order to increase the capacity of an irregular three and nine-story steel moment frame buildings against pulse like seismic excitations and progressive collapse effect. For this purpose, seismic performance level of this structure has been evaluated and rehabilitated by TADAS damper. The seismic performance level of damper-equipped building was evaluated by nonlinear static analysis (pushover) and also nonlinear time history analysis under various pulse-like ground motions. In order to assess the performance of TADAS damper under progressive collapse phenomenon, 12 critical columns considering side and corner locations proposed by GSA code were selected to remove. Then considering the seismic nonlinear response of these columns under selected ground motions, four critical scenarios were selected for each building. According to irregularity of the structural plan the capacity of the rehabilitated structure was evaluated using nonlinear time history analysis. To simulate the progressive collapse phenomenon at first the internal column forces are evaluated before it is removed. These forces are dynamically applied to the structure as a nodal point load in addition to existed dead and live loads in five seconds after removing the column. After completing the amount of loading they kept unchanged for two second and finally the nodal point loads would be removed over a fraction of second and therefor the dynamic sudden column removal was simulated. The nonlinear response of the irregular TADAS-equipped building was computed through the step by step numerical integration method known as the Newmark’s β-method integration procedure using SAP2000 software. A fiber element model was employed to take into account the non-linear behavior of columns while for beam elements it is used plastic hinge model considering ASCE41 code. The dampers are also modeled using the link element in the software and the nonlinear plastic Wen model is assigned to simulate the nonlinear behavior of this element . The presented results include comparison of roof displacement diagrams, inter story drift and center mass acceleration for the structure with and without dampers in different failure scenarios. The seismic results show the ability of TADAS damper to improve seismic performance of irregular building. This control system could reduce the inter story drift of buildings at least 40% while the center mass acceleration increase 5.0% While the hysteresis diagram of dampers indicates their ability to suppress the response of this structure. These results indicate the success of the damping system in the simultaneous control of acceleration and displacement and indicate another result of this study. On the other hands the progressive collapse analysis results show the ability of TADAS damper to improve the capacity of the structure against four types of progressive failure scenario especially in scenario 2. The results showed that the vertical displacement was reduced at least 15%.

کلیدواژه‌ها English

seismic excitations
progressive collapse
supplemental damper devices
TADAS
Irregular Building
nonlinear dynamic analysis
[1] Kiakojouri F., Biagi V.B., Chiaia b. & Sheidaii M.R. 2020 Progressive collapse of framed building structures: Current knowledge and future prospects. Journal of Engineering Structures, 206(1), pp.110061,
[2] Tavakoli H.R. & Kiakojouri F. 2013 Influence of sudden column loss on dynamic response of steel moment frames under blast loading. International Journal of Engineering, 26(1):197-205.
[3]Hosseini M., Beiranvand P., Dadgar M.R. & Zarei M. 2016 The effect of column location and bracing on progressive collapse of steel structures. Electronic Journal of Structural Engineering. 16(1):63-8.
[4] Yavari H., Ghobadi M.S. & Yakhchalian M. 2020 Effects of torsional irregularity and seismicity level on progressive collapse potential of steel moment frames. Journal of Civil and Environment Engineering , 50(2):71-81,(In Persian).
[5] Kim J, Kim T. (2009). Assessment of progressive collapse-resisting capacity of steel moment frames. Journal of Constructional Steel Research, 65(1):169-179.
[6] Kim J., Park J.H. & Lee, T.H. 2011 Sensitivity analysis of steel buildings subjected to column loss, Engineering Structure, 33(2): 421-432.
[7] Tavakoli H.R. & Moradi Afrapoli M. 2018 Robustness analysis of steel structures with various lateral load resisting systems under the seismic progressive collapse. Engineering Failure Analysis, 83(1): 88-101
[8]Pujari a.b. & sangle K.S. 2018 Progressive collapse analysis of seismically design low rise steel frame structure. ARPN Journal of Engineering and Applied Sciences, 13(1):34-41.
[9]Alireza C.h. Salmasi A.C. & Sheidaii M.R. 2017 Assessment of eccentrically braced frames strength against progressive collapse. International Journal of Steel Structures, 17(2): 543-551.
[10] Mirjalali, M.,· Ghasemi, M and Labbafzadeh, M.S. Effect of Bracing Type and Topology on Progressive Collapse Resistance of Eccentrically Braced Frames, International Journal of Steel Structures 19(8):1-14.
[11] Wang T., Zhang L., Zhao H. & Chen Q. 2016 Progressive collapse resistance of reinforced-concrete frames with specially shaped columns under loss of a corner column, Magazine of Concrete Research, 68(9): 435-449
[12] Azim L., Yang J., Bhatta, S., Wang, F. & Liu Q. 2020 Factors influencing the progressive collapse resistance of RC frame structures. Journal of Building Engineering, 27(1), pp. 100986
[13] Zhang Q.& Li Y. 2017 The Performance of Resistance Progressive Collapse Analysis for High-Rise Frame-Shear Structure Based on OpenSees. Shock and Vibration, Volume 2017, Article ID 3518232, 13 pages.
[14] Ebrahimi A.H., Ebadi Jamkhaneh M. & Shokri Amiri M. 2018 3D finite-element analysis of steel moment frames including long-span entrance by strengthening steel cables and diagonal concentrically braced frames under progressive collapse, Practice Periodical on Structural Design and Construction, 23(4): 04018025
[15] HoveidaeN. & Habibi Pourzare B. 2019 Comparison of Progressive Collapse Capacity of Steel Moment Resisting Frames and Dual Systems with Buckling Retrained Braces , Journal of Rehabilitation in Civil Engineering, 7(4): 37-56.
[16] Yao J.T. 1972 Concept of structural control. Journal of the Structural Division, 98(st 7).
[17] Housner G.W., Bergman L.A., Caughey T.K., Chassiakos A.G., Claus R.O., Masri S.F., Skelton E., Soong T.T., Spencer B.F. & Yao J.T.P.1997 Structural control: past, present and future. Journal of Engineering Mechanic, 123(9):897–974.
[18] Spencer B.F. Jr. & Nagarajaiah S. 2003 State of the art of structural control. Journal of Structural Engineering, 129(7):845–856
[19] Fisco NR, Adeli H (2011) Smart structures: part I—active and semi-active control. Scientia Iranica A 18(3):275–284
[20] Fisco NR, Adeli H (2011) Smart structures: part II—hybrid control systems and control strategies. Scientia Iranica A 18(3):285–295.
[21] Ghaedi K., Ibrahim Z., Adeli H.& Javanmardi A. 2017 Invited Review: recent developments in vibration control of building and bridge structures. Journal of Vibroengineering. 19:3564–3580. https ://doi. org/10.21595 /jve.2017.18900
[22] Kim J., Choi H. and Min K.W. 2011 Use of rotational friction dampers to enhance seismic and progressive collapse resisting capacity of structures. The Structural Design of Tall and Special Buildings, 20(1), 515-537.
[23] Kim J, Lee S, Choi H. 2011 Progressive collapse resisting capacity of moment frames with viscous dampers. The Structural Design of Tall and Special Buildings, 22(5):399-414.
[24]Kim J., Lee S. and Min K.W. 2014 Design of MR dampers to prevent progressive collapse of moment frames. Structural Engineering and Mechanics. 52(2):291-306.
[25]GSA: Alternate Path Analysis & Design Guidelines for Progressive Collapse Resistance, the U.S. General Services Administration; 2016
[26]Reyes, J.C. & Chopra, A.K. 2011 Evaluation of three-dimensional modal pushover analysis for unsymmetric-plan buildings subjected to two components of ground motion, Journal of Earthquake Engineering & Structural Dynamics, 40(13): 1475–1494.
[27] Seismic Evaluation and Retrofit of Existing Buildings/ASCE/SEI 41-13/ISBN 978-0-7844-8081-6 (PDF)
[28]CSI Analysis Reference Manual For AP2000, ETABS, SAFE and CSI Bridge, ISO# GEN062708M1 Rev.14, Berke ley, Cal i for nia, USA, 2015.
[29] Kelly J.M., Skinner R.I., & Heine, A.J. 1972 Mechanisms of energy absorption in special devices for use in earthquake resistant structures, Bulletin of New Zealand National Society for Earthquake Engineering, 5(3),1-26.
[30]Soong, T.T. and Spencer B.F. Jr. 2002 Supplemental energy dissipation: state-of-the art and state-of-the-practice, Engineering Structures, 24(3): 243-259
[31] Javanmardi A., Ibrahim, Z., · Ghaedi, K., · Benisi Ghadim H. and · Hanif, M.U., State-of-the-Art Review of Metallic Dampers: Testing, Development and Implementation. Archives of Computational Methods in Engineering ,
27(1): 455–478 https://doi.org/10.1007/s11831-019-09329-9
[32] Tsai K.C., Chen H.W., Hong C.P. & Su, Y.F. 1993 Design of Steel Triangular Plate Energy Absorbers for Seismic-Resistant Construction, Journal of Earthquake Spectra, 9(3), 505-528.
[33]Chan R.W., Albermani F. & Williams M.S. 2009Evaluation of yielding shear panel device for passive energy dissipation. Journal of Constructional Steel Research, 65(2):260‐268. https://doi.org/10.1016/j.jcsr.2008.03.017
[34]Bosco M. & Marino E.M. 2013 Design method and behavior factor for steel frames with buckling restrained braces. Journal of Earthquake Engineering & Structural Dynamics. 2013, 42(8):1243‐1263.
[35]Lotfi Mahyari S., Tajmir Riahi H. and Hashemi M. 2019 Investigating the analytical and experimental performance of a pure torsional yielding damper, Journal of Constructional Steel Research, 161: 385–399
[36] Zhang R., Wang, C., Pan, C., Shen, H., Ge, Q. & Zhang, L. 2018 Simplified design of elastoplastic structures with metallic yielding dampers based on the concept of uniform damping ratio , Engineering Structures ,176: 734–745
[37] Lin Y.Y., Tsai M.H., Hwang, J.S. & Chang, K.C. 2003 Direct displacement-based design for building with passive energy dissipation systems, Engineering Structures, 25(1),25-37.
[38] Hao L., Zhang R. & Jin, K. 2017 Direct design method based on seismic capacity redundancy for structures with metal yielding dampers, Journal of Earthquake Engineering & Structural Dynamics,47(2):515-534.
[39] Moreschi, L. M. & Singh M. P. 2003 Design of yielding metallic and friction dampers for optimalseismic performance, Journal of Earthquake Engineering & Structural Dynamics, 32(8):1291–1311 (DOI: 10.1002/eqe.275)
[40]Pacific Earthquake Engineering Research Center. NGA Database; 2009.http://peer. berkeley. edu/nga/
[41]Somerville P.G., Smith N.F. & Graves, R.W. 1997 Modification of empirical strong ground motion attenuation relations to include the amplitude and duration effects of rupture directivity, Seismological Research Letters, 68( 1):199-222.
[42]Baker J. 2007 Quantitative Classification of Near-Fault Ground Motions Using Wavelet Analysis, Bulletin of the Seismological Society of America, 97( 5): 1486–1501.
[43]Baker J.W. & Cornell C.A. 2008 Vector-valued intensity measures for pulse-like near-fault ground motions. Journal of Engineering Structure 30:1048–57.
[44] Guneş N. & Ulucan Z. C. 2019 Nonlinear dynamic response of a tall building to near‑fault pulse‑like ground motions, Bulletin of Earthquake Engineering, 17: 2989-3013.
[45] Chopra, A.K. 2001 Dynamics of Structures: Theory and Applications to Earthquake Engineering, Prentice Hall.
[46] Ohtori Y., Christenson, R. E., Spencer, B. F., Jr., & Dyke, S. J. 2004 Benchmark control problems for seismically excited nonlinear buildings", Journal of. Engineering Mechanics, 130(40):366–387.