کاربرد مدل های هوشمند تطبیقی عصبی-فازی در معرفی روش طراحی لرزه ای عملکردی هیبریدی برای سازه های منظم فولادی واگرا تحت اثر زلزله حوزه نزدیک

نوع مقاله : پژوهشی اصیل (کامل)

نویسندگان
1 گروه مهندسی عمران، واحد آبادان، دانشگاه آزاد اسلامی، آبادان، ایران
2 گروه مهندسی عمران، موسسه آموزش عالی جهاددانشگاهی، خوزستان، ایران
3 گروه مهندسی عمران، واحد شوشتر، دانشگاه آزاد اسلامی، شوشتر، ایران
چکیده
با توجه به مزایای قابل ملاحظه­ی روش طراحی لرزه­ای بر اساس عملکرد مانند امکان تعیین خسارت احتمالی و خسارات و صدمات مالی و جانی ساکنین و مجاورین سازه، این روش مورد استقبال فراوانی قرار گرفته است. با این حال، از آنجایی که این روش نیازمند تحلیل­های پیچیده­تر نسبت به روش­های مرسوم نیرویی می­باشد، گاها ترجیح برخی مهندسان حرفه­ای همان روش ساده­ی نیرویی می­باشد. تلفیق دو روش نیرویی و عملکردی و توسعه­ ی روش هیبریدی در راستای استفاده از مزایای هر دو روش، هدف بنیادین این مقاله می­باشد. بدین منظور در این مقاله، قاب­هایی با تعداد 3، 6، 9، 12، 15 و 20 طبقه با تعداد 3 دهانه به عرض 5متر در نظر گرفته شده است. طول تیرپیوند به‌عنوان یکی دیگر از پارامترهای مؤثر بر پاسخ، به میزان 1، 75/1 و 50/2 متر تعریف‌شده است. مدل­های مورد بررسی، برای 3 سطح عملکردی استفاده بی­وقفه، ایمنی جانی و آستانه فروریزش و نیز اولین رخداد مفصل خمیری، توسعه داده شده­اند. مدل­های نهایی تحت 20 رکورد نزدیک­گسل دارای خصوصیات پالس­گونه پیشرونده بکمک تحلیل تاریخچه زمانی تحلیل شده­اند. پس از تولید 12960 داده از نوعی تحلیل تاریخچه زمانی ابداعی، دو مدل هوشمند تطبیقی عصبی-فازی جهت محاسبه­ی ضریب رفتار و شکل­پذیری سازه مورد استفاده قرار گرفته است. نتایج حاصل از طراحی لرزه­ای هیبریدی در مقایسه با روش نیرویی و تاریخچه زمانی معادل نشان دهنده­ی دقت قابل قبول روش معرفی شده در حوزه فرضیات می­باشد

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Application of Adaptive Neural-Fuzzy Intelligent Models in Extension of Hybrid Force/Displacement Seismic Design method for EBF Regular Structures, subjected to Near-fault Earthquakes

نویسندگان English

Seyed Abdonnabi Razavi 1
Navid Siahpolo 2
Mehdi Mahdavi Adeli 3
1 Department of Civil Engineering, Abadan Branch, Islamic Azad University, Abadan, Iran
2 Department of Civil Engineering, Institute for higher education ACECR, Khouzestan, Iran
3 Department of Civil Engineering, Shoushtar Branch, Islamic Azad University, Shoushtar, Iran
چکیده English

Due to the significant advantages of the performance-based seismic design method, such as the possibility of determining the possible damage and financial and human losses of residents and neighbors of the structure, this method has been widely welcomed. However, since this method requires more sophisticated analysis than conventional force methods, sometimes the simple force method is preferred by some professional engineers. The main purpose of this article is to combine the two methods of force-based and performance-based and to develop a hybrid method in order to use the advantages of both methods.in this regard, frames with 3, 6, 9, 12, 15 and 20 story with 3 bays with a width of 5 meters have been considered. The length of the link beam is defined as another parameter affecting the response, 1, 1.75 and 2.50 meters. The studied models have been developed by designing the method of load and resistance factor design method, for 3 performance levels of immediate occupancy, life safety and collapse prevention, as well as the first occurrence of the plastic joint. The final models are analyzed under 20 pulse-type near-fault records using time history analysis. To generate the expected database, 12,960 time history analyzes were performed based on an incremental dynamic analysis platform. In this regard, a unique frame is continuously and repeatedly affected by a single accelerometer by multiplying the accelerometer by an SF coefficient. In each iteration, the maximum displacement in the frame is compared to the target range of ASCE41-13 code. The analysis operation is continued until the expected numbers are reached and then stopped. For each of the frames, 4 different acceptance levels are defined to consider different performance levels. Finally, using the genetic algorithm, the corresponding experimental relationships are presented to determine the behavior factor, local and global ductility. The proposed relationships are influenced by geometric characteristics such as the number of stories, the stiffness ratio of the columns, the slenderness of the braces, the length of the beam and the ductility levels. The first ambiguous issue that has been less mentioned in previous research is the use of near-fault field records in the development of a hybrid functional seismic design method. After generating 12960 data from an innovative time history analysis, two intelligent adaptive neural-fuzzy models have been used to calculate the coefficient of behavior and ductility of the structure. In order to create the best and most accurate model, Fuzzy C-Mean clustering (FCM) and Subtracting clustering methods have been used. Based on the results, the model created based on Subtracting clustering provides more accurate results than the other model. The results of hybrid seismic design in comparison with the force method and equivalent time history show the acceptable accuracy of the method introduced in the field of hypotheses. The obvious advantage of using a hybrid seismic design method compared to force methods is the possibility of selecting an expected performance level, which leads to design control and more accurate estimation of response values of quantities such as global ductility, local ductility, inter-story drift

کلیدواژه‌ها English

Hybrid Force/Displacement Design
Time history analysis
seismic demand
Pulse-type near-fault earthquake
Adaptive Neural-Fuzzy Intelligent Models
[1] T. L. Karavasilis, N. Bazeos, and D. E. Beskos, "Drift and ductility estimates in regular steel MRF subjected to ordinary ground motions: a design-oriented approach," Earthquake Spectra, vol. 24, no. 2, pp. 431-451, 2008.
[2] T. L. Karavasilis, N. Bazeos, and D. Beskos, "Seismic response of plane steel MRF with setbacks: estimation of inelastic deformation demands," Journal of Constructional Steel Research, vol. 64, no. 6, pp. 644-654, 2008.
[3] T. L. Karavasilis, N. Makris, N. Bazeos, and D. E. Beskos, "Dimensional response analysis of multistory regular steel MRF subjected to pulselike earthquake ground motions," Journal of structural engineering, vol. 136, no. 8, pp. 921-932, 2010.
[4] A. Tzimas, T. Karavasilis, N. Bazeos, and D. Beskos, "A hybrid force/displacement seismic design method for steel building frames," Engineering Structures, vol. 56, pp. 1452-1463, 2013.
[5] A. I. Dimopoulos, N. Bazeos, and D. E. Beskos, "Seismic yield displacements of plane moment resisting and x-braced steel frames," Soil Dynamics and Earthquake Engineering, vol. 41, pp. 128-140, 2012.
[6] S. A. Razavi, N. Siahpolo, and M. Mahdavi Adeli, "A New Empirical Correlation for Estimation of EBF Steel Frame Behavior Factor under Near-Fault Earthquakes Using the Genetic Algorithm," Journal of Engineering, vol. 2020, 2020.
[7] S. A. Razavi, N. Siahpolo, and M. Mahdavi Adeli, "The Effects of Period and Nonlinearity on Energy Demands of MDOF and E-SDOF Systems under Pulse-Type Near-Fault Earthquake Records," Scientia Iranica, 2020.
[8] S. No, "2800," (in Persian), Iranian Code of Practice for Seismic Resistant Design of Buildings, vol. 3, 2005.
[9] R. Pekelnicky, S. D. Engineers, S. Chris Poland, and N. D. Engineers, "ASCE 41-13: Seismic Evaluation and Retrofit Rehabilitation of Existing Buildings," Proceedings of the SEAOC, 2012.
[10] A. Tzimas, T. Karavasilis, N. Bazeos, and D. Beskos, "Extension of the hybrid force/displacement (HFD) seismic design method to 3D steel moment-resisting frame buildings," Engineering Structures, vol. 147, pp. 486-504, 2017.
[11] F. De Luca, I. Iervolino, and E. Cosenza, "Un-scaled, scaled, adjusted and artificial spectral matching accelerograms: displacement-and energy-based assessment," Proceedings of XIII ANIDIS,“L’ingegneria Sismica in Italia”, Bologna, Italy, 2009.
[12] J. Hancock, "The influence of duration and the selection and scaling of accelerograms in engineering design and assessment," Imperial College London (University of London), 2006.
[13] J. W. Baker, "Quantitative classification of near-fault ground motions using wavelet analysis," Bulletin of the Seismological Society of America, vol. 97, no. 5, pp. 1486-1501, 2007.
[14] T. Karavasilis, N. Bazeos, and D. Beskos, "A hybrid force/displacement seismic design method for plane steel frames," in Proceedings of 1st European conference on earthquake engineering and seismology (1st ECEES), Geneva, Switzerland, 2006, pp. 3-8.
[15] T. L. Karavasilis, N. Bazeos, and D. E. Beskos, "Estimation of seismic drift and ductility demands in planar regular X‐braced steel frames," Earthquake Engineering & Structural Dynamics, vol. 36, no. 15, pp. 2273-2289, 2007.
[16] S. A. Razavi, N. Siahpolo, and M. Mahdavi Adeli, "An intelligent Adaptive Neuro-Fuzzy Inference System to Estimate the Behavior factor of EBF steel frames under Pulse-type Near-fault Earthquakes," (in en), Sharif Journal of Civil Engineering, 2021, doi: 10.24200/j30.2020.55782.2775.
[17] S. A. Razavi, N. Siahpolo, and M. Mahdavi Adeli, "Application of Adaptive Neuro-Fuzzy Inference System for Estimating the Global Ductility of EBF steel frames under Pulse-type Near-fault Earthquakes," Modares Civil Engineering journal, vol. 20, no. 6, pp. 0-0, 2020.
[18] B. Standard, "Eurocode 8: Design of structures for earthquake resistance," Part, vol. 1, pp. 1998-1, 2005.