بیان رفتار تنش-تغییر شکل و گسیختگی خاک ساختار یافته بر اساس مدل پلاستیک سلسله مراتبی سطوح منفرد (HISS)

نوع مقاله : پژوهشی اصیل (کامل)

نویسندگان
1 دانشجوی دکتری عمران(ژئوتکنیک)، دانشکده فنی و مهندسی، دانشگاه محقق اردبیلی، اردبیل، ایران
2 عضو هیات علمی دانشگاه محقق اردبیلی
چکیده
اکثر خاکها در حالت طبیعی دارای نوعی ساختار می باشند. رفتار تراکم پذیری حجمی خاک‌های دانه‌ای و ساختار یافته که خردشوندگی ساختار را در حین بارگذاری تجربه میکنند، غیرخطی است. در اینگونه خاک‌ها در اثر افزایش بار، ساختار بین دانه‌های خاک شکسته و فضای خالی بین دانه‌های خاک پر می‌گردد که در نتیجه با افزایش تنش، مقدار تغییرات کرنش کمتر می‌گردد و به عبارت دیگر مقدار مدول الاستیسیته خاک افزایش پیدا می‌کند.‌‌‌ مدول الاستیسیته متغیر در اکثر مصالح به ویژه برای خاک که فضای خالی آن در مسیر بارگذاری پر می‌گردد، مشهود است. در مفهوم حالت بهم خوردگی می‌توان به کمک یک تابع مناسب بین دو حالت معلوم اولیه و نهایی ارتباط برقرار کرد و تغییرات از حالت اولیه تا نهایی را در هر مرحله مشخص نمود. در این پژوهش به کمک مفهوم حالت بهم خورده تابعی مناسب برای مدول الاستیسیته متغیر تعریف شد و سپس مدل تراکم پذیری حجمی با استفاده از مفهوم حالت آشفته توسعه داده شده و در مدل HISS که براساس مفهوم حالت بهم‌خوردگی می‌باشد، گنجانده شد تابع حالت ارائه شده بصورتی غیرخطی و وابسته به تنش همسان بوده‌است. نتایج آزمایش‌های سه محوره ارائه شده در تحقیقات گذشته برای بررسی و صحت سنجی مدل ارائه شده استفاده شد. مقایسه نتایج مدل ارائه شده با نتایج تجربی آزمایش های برش سه محوری نشان داد که مدل ارائه شده قادر به پیش بینی رفتار خاک‌های دارای ساختار با دقت مناسب می‌باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Constitutive Modeling the Stress-Strain and Failure Behavior of Structured Soils Based on HISS Model

نویسندگان English

Ali Farsijani 1
Ahad Ouria 2
1 Ph.D Candidate, Civil Engineering Department, University of Mohaghegh Ardabili, Iran
2 Associate Professor, Civil Engineering Department, University of Mohaghegh Ardabili, Iran
چکیده English

Granular materials in their natural state have an inter particle boning that is resulted from natural cementation. These bonds form a relatively strong structure in the soil mass that is called soil structure and consequently these types of material are called structured soils. Structured soils could also be produced artificially by cement or lime treatments. Volumetric compression and the stress-strain behavior of the structured materials after virgin yielding are highly nonlinear that cannot be expressed by a single line in semilogarithmic scale. The natural or artificial structure of the soil retains the void ratio of the soil in higher levels than the void ratio of the same soil in remolded state at the same stress levels. Increasing the stress level from the threshold stress of the virgin yielding initiates the crashing of the soil structure that results large amounts of volumetric strains with a small value of volumetric stiffness. Further crashing the structure of the soil and decreasing its void ratio increases the volumetric stiffness of the soil. Although this procedure is highly nonlinear, however it is a continuous phenomenon and can be formulated mathematically. Since the structure losing behavior of structured soils occurs between two known states, therefore, it could be explained based on the disturbed state concept (DSC). According to the DSC, the behavior of complex phenomena between two reference states could be described based on their behaviors in two reference states using an appropriate state function. The state function or interpolating function relates the response of the material at any level to its responses at two reference states. In this paper a constitutive model base on hierarchical single surface model (HISS) and the disturbed state concept was proposed to describe the stress-strain and the failure behavior of structured soils. The behavior of the soil at the beginning of the virgin yielding was considered as initial, relatively intact (RI), state and its behavior after fully crashed state was considered as fully adjusted (FA) state. The disturbance function derived based on the isotropic compression behavior of the material in the laboratory. A power form state function was proposed to describe the variation of the bulk modulus of the soil. The variable compression model was implemented in HISS model to capture the volumetric behavior of the structured soil. The proposed model verified based on the data from literature. The verification of the proposed constitutive model showed the ability of the model to predict the stress-strain and failure behavior of structured soils. The proposed model could be employed with any other constitutive models to introduce the effect of the structure destruction on the stress-strain and failure behavior of the soil. In the proposed model, if the initial and end modulus of elasticity are equal, the strain stress relationship is linear, and if the initial and final values of the modulus of elasticity are different, then the nonlinear stress-strain behavior is simulated. Hence the behavior of a wide range of materials can be predicted by this model. The proposed model could be utilized to predict the behavior natural structured soils, artificially cemented soils.

کلیدواژه‌ها English

Disturbed state concept
Structured soil
Compression
Constitutive Model
HISS model
1- Mitchell JK, Soga K,(2005). ”Fundamentals of soil behavior”, John Wiley & Sons, US, pp 325-350.
2- A.R. Bagherieh, A. FarsijanI, (2016). ”Consolidation Behavior of collapsible clay soils in saturated and unsaturated conditions” , Sharif Civil Engineering Journal, pp 43-54
3- Ouria, A., Karamzadegan, S., Emami, S., “Interface properties of a cement coated geocomposite”, Construction and Building Materials, Volume 266, Part B, 2021, 121014. https://doi.org/10.1016/j.conbuildmat.2020.121014
4- Yang, C., Liu, X., Yang, C., and Carter, J. P. (2015). “Constitutive modelling of Otaniemi soft clay in both natural and reconstituted states.” Comput. Geotech, , 70, 83–95.
5- Lagioia, R., and Nova, R. (1995). “An experimental and theoretical study of the behaviour of a calcarenite in triaxial compression.” Geotechnique, 45(4), 633–648
6- Rouainia, M., and Muir Wood, D. (2000). “A kinematic hardening constitutive model for natural clays with loss of structure.” Geotechnique, 50(2), 153–164
7- Liu, M. D., and Carter, J. P. (2000a). “Modelling the destructuring of soils during virgin compression.” Geotechnique, 50(4), 479–483.
8- Liu, M. D., Carter, J. P., and Desai, C. S. (2003). “Modeling compression behavior of structured geomaterials.” Int. J. Geomech., 10.1061 /(ASCE)1532-3641(2003)3:2(191), 191–204
9- Chowdhury B, Haque A, Muhunthan B, (2014 ). “New pressure-void ratio relationship for structured soils in the virgin compression range”, Journal of Geotechnical and Geoenvironmental Engineering, 140 (8), 06014009.
10- Ouria, A., Ranjbarnia, M., and Vaezipour, D. (2018). “A Failure Criterion for Weak Cemented Soils.” Journal of Civil and Environmental Engineering, 48.3(92), 13–21.
11- Ouria, A. (2017). “Disturbed state concept-based constitutive model for structured soils.” International Journal of Geomechanics, 17(7) Doi:10.1061/(ASCE)GM.1943-5622.0000883.
12- Mendoza, C., Farias, m.m.d., (2020) “ Critical State for Structured Soil” Journal of Rock Mechanics and Geotechnical Engineering 12 (2020) 630e641
13- Coop, M. R., and Atkinson, J. H. (1993). “The mechanics of cemented carbonate sands.” Geotechnique, 43(1), 53–67.
14- Horpibulsuk, S., Suddeepong, A., Chinkulkijniwat, A., and Liu, M. D. (2012). “Strength and compressibility of lightweight cemented clays.” Appl. Clay Sci., 69, 11–21.
15- Horpibulsuk, S., Rachan, R., Suddeepong, A., Liu, M. D., and Du, Y. J. (2013). “Compressibility of lightweight cemented clays.” Eng. Geol., 159, 59–66.
16- Chong, S., and Santamarina, J. (2016). “Soil compressibility models for a wide stress range.” J. Geotech. Geoenviron. Eng., 10.1061/(ASCE)GT .1943-5606.0001482, 06016003.
17- Desai, C. S. (1974). “A consistent finite element technique for work- oftening behavior.” Proc., Int. Conf. on Computational Methods in Nonlinear Mechanics, J. T. Oden, et al., eds., Texas Institute for Computational Mechanics, Austin, TX.
18- Kalantary, F., Yazdi, J. S., Bazazzadeh, H.,(2013) “ optimumcalibration of DSC/HISS Constitutive model parameters for rockfill materials” International of civil Engineering.
19- Desai, C. S., and Toth, J. (1996). “Disturbed state constitutive modeling based on stress-strain and non-destructive behavior.” Int. J. Solids Struct., 33(11), 1619–1650.
20- Desai, C. S. (2001). Mechanics of materials and interfaces: The disturbed state concept, CRC, Boca Raton, FL.
21- Desai, C. S., andWang, Z. C. (2003). “Disturbed state model for porous saturated materials.” Int. J. Geomech., 10.1061/(ASCE)1532 -3641(2003)3:2(260), 260–264.
22- Desai, C. S. (2016). “Disturbed state concept as unified constitutive modeling approach.” J. Rock Mech. Geotech. Eng., 8(3), 277–293
23- Geiser, F., Laloui, L., Vulliet, L., and Desai, C. S. (1997). “Disturbed state concept for constitutive modeling of partially saturated porous materials.” Proc., 6th Int. Symp. on Numerical Models in Geomechanics, CRC, Boca Raton, FL.
24- Ouria, A., Behboodi, M. (2017). “Compressibility of Cement Treated Soft Soils” Journal of Civil and Environmental Engineering. (47)1, pp1-9
25- Ouria, A., Desai, C. S., and Toufigh, V. (2015). “Disturbed state concept-based solution for consolidation of plastic clays under cyclic loading.” International Journal of Geomechanics, 15(1). doi: 10.1061/(ASCE)GM.1943-5622.0000336
26- Desai, C. S. (2015). “Constitutive modeling of materials and contacts using the disturbed state concept: Part 1: Background and analysis.” Comput. Struct., 146, 214e33.
27- Toufigh, V., Desai, C. S., Saadatmanesh, H., Toufigh, V., Ahmari, S., and Kabiri, E. (2014). “Constitutive modeling and testing of interface between backfill soil and fiber-reinforced polymer.” Int. J. Geomech., 10.1061/(ASCE)GM.1943-5622.0000298, 04014009.
28- Toufigh, V., Hosseinali, M., and Shirkhorshidi, M. (2016). “Experimental study and constitutive modeling of polymer concrete’s behavior in compression.” Constr. Build. Mater., 112, 183–
29- Baghini, E. G., Toufigh, M. M., and Toufigh, V. (2017). ‘‘Analysis of pile foundations using natural element method with disturbed state concept’’ J. Computers and Geotechnics.
30- Veiskarami, M., Ghorbani, A., Alavipour., M, R., (2012) ‘‘APPLICATION OF THE DISTURBED STATE CONCEPT IN EVALUATION OF A DEVELOPED ELASTO-PLASTIC CONSTITUTIVE MODEL FOR ROCKFILLS ‘‘Coference paper in 5 th international Geomechanics. At: Varna, Bulgaria
31- Marachi, N. D., Chan, C. K., and Seed, H. B. (1972). ‘‘Evaluation of properties of rock fill materials.’’ J. SMFE, 98(1), 95–114
32- Gupta, A.K., (2009) ‘‘Triaxial Behaviour of Rockfill materials ‘‘Bund, J. EJGE, vol. 14. 1-12
33- Gupta, A.K., (2009) ‘‘Effect of particle size and confining pressure on breakage and strength parameters of Rockfill materials ‘‘Bund, H. EJGE, vol. 14. 1-18
34- Desai, C. S., Chen, Y.(2006), ‘‘Parameter Optimization and sensitivity Analysis for Disturbed State Constitutive model‘‘,.” International Journal of Geomechanics, pp 75-88.
35- Potts, D. M., and Zadravkovic, Ladija, (1999), ‘‘Finite element analysis in geotechnical engineering‘‘, Vol. 1: Theory, Thomas Telford. P.123
36- Chen, J. and Desai, C.S., (1997) “Optimization of the Disturbed State Concept for Constitutive Modelling, and Application in Finite Element Analysis, Report to NSF, Dept. of Civil Engng. and Engng. Mechanics, University of Arizona, Tucson, Arizona,
37- A. Varadarajan; K. G. Sharma; K. Venkatachalam; and A. K. Gupta.,” Testing and Modeling Two Rockfill Materials”., JOURNAL OF GEOTECHNICAL AND GEOENVIRONMENTAL ENGINEERING.
38- Anagnostopoulos, A. G., Kalteziotis, N., Tsiambaos, G. K., and Kavvadas, M. (1991). “Geotechnical properties of the Corinth Canal marls.” Geotech. Geol. Eng., (1), 1–26.