تاثیر آب دوستی الیاف ماکرو پلی پروپیلن بر خصوصیات مکانیکی بتن الیافی

نوع مقاله : پژوهشی اصیل (کامل)

نویسندگان
1 دانشگاه صنعتی اصفهان
2 دانشکده مهندسی نساجی دانشگاه صنعتی اصفهان
3 دانشگاه کردستان
4 دانشکده عمران دانشگاه صنعتی اصفهان
چکیده
برخی از الیاف پلیمری با مزایای مکانیکی مطلوب، از خاصیت جذب رطوبت برخودار نمی­باشند. این الیاف آب گریز نامیده شده­اند. در بتن مسلح به الیاف، میزان چسبندگی الیاف آب گریز به دلیل عدم تمایل به جذب رطوبت، به اندازه چسبندگی الیاف آب دوست نمی­باشد. آب گریز بودن برخی از الیاف پلیمری، همانند پلی پروپیلن از دغدغه­های استفاده از این الیاف در بتن است. استفاده از روش­های شیمیایی اصلاح سطح، سبب ایجاد خاصیت آب دوستی در این الیاف می­شود و بنابراین امکان ایجاد پیوند مستحکم­تر مابین الیاف و ماتریس بتنی فراهم می­گردد. در این تحقیق در راستای به کار گیری الیاف در سازه­های بتنی، الیاف مورد نیاز بر اساس دانش روز مهندسی نساجی، طراحی و با استفاده از امکانات موجود تولید گردید. جهت اصلاح رفتار الیاف پلی پروپیلن در برابر رطوبت با استفاده از پلیمر گرفت شده، الیاف ماکرو آب دوست با پایه پلی پروپیلن ساخته گردید. خصوصیات الیاف تولیدی به دقت اندازه گیری شده و در بتن به کار گرفته شد. نتایج نشان می­دهد از آنجا که آب یکی از ترکیبات بتن می­باشد، تمایل الیاف به خیس شدگی و جذب آب از عوامل تأثیرگذار در میزان چسبندگی الیاف به ماتریس بتنی به شمار می‌رود. عدم جذب رطوبت و خنثی بودن الیاف پلی پروپیلن موجب ایجاد پیوند­های ضعیف­تری بین الیاف و ماتریس بتنی شده است. افزودن الیاف آب دوست به بتن در مجموع موجب افزایش 11%، 38% و 77% مقاومت فشاری، کششی و خمشی بتن شده است. الیاف آب دوست به ترتیب 5%، 7% و 5% مقاومت فشاری، کششی و خمشی بتن مسلح شده را در مقایسه با بتن مسلح شده با الیاف آب گریز ارتقاء بخشیده­اند.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

The Effect of Hydrophilicity of Macro-Polypropylene Fibers on Mechanical Properties of Fiber Reinforced Concrete

نویسندگان English

rohallah rostami 1
mohammad zarrebini 2
khaled sanginabadi 3
DAVOOD MOSTOFINEJAD 4
sayyed mahdi abtahi 1
hossein fashandi 1
1 PhD. STUDENT
2 associate prof. textile department IUT
3 PHD. STUDENT
4 Department of Civil Engineering, Isfahan University of Technology, Isfahan,84156-83111, Iran
چکیده English

Fiber strands due to their flexibility, high aspect ratio, cross-section varieties and degree of crystallinity are adequately strong to be used as reinforcement in composites such as concrete. Newly introduced fiber reinforced concretes (FRC) are the cementitious materials that exhibit reinforcing features in all directions. FRCs due to their interesting properties are enormously favored by civil and structural engineers. Natural and synthetic fibers can be employed in concretes, shutcretes and mortars. The interface between the added fibers and the cementitious matrix fundamentally influences the properties of the FRCs. Fibers are classified into hydrophobic and hydrophilic. The former fibers have negligible moisture absorbent capacity while exhibiting acceptable mechanical properties. Hydrophobic fibers are incapable of forming adequate adhesion with cementitious matrix. Properties such as low weight, strength parity in wet or dry conditions and inertness in acid or alkaline environments are among the salient properties of polypropylene (PP) fibers. PP as a hydrophobic fiber has gained wide acceptance as concrete reinforcement. The hydrophobicity of fibers, such as PP, has been always been disadvantageous for the use of these fibers in concrete structures. Treatments such as chemical surface modification imparts hydrophilic property to PP fibers. Thus the modified PP fibers can successfully adhere to concrete matrix. In this research melt-spinning technology as the most widely used manufacturing technique for production of the PP fibers was used. Pure and grafted anhydride maleic PP granules were used to produce both hydrophobic and hydrophilic PP fibers. The produced fibers were characterized according to relevant standards prior to be added to concrete samples at identical fiber volume fraction. The results pointed to the positive effect of the induced hydrophilic properties in the fibers as far as the fiber-matrix adhesion was concerned. The ability of the chemically modified fibers to absorb water when wetted with the moisture present in the concrete, greatly improved the adhesion of the added fibers with the concrete matrix. The effect of hydrophilicity of PP fibers on mechanical properties of reinforced concrete was investigated by comparing concrete samples prepared by modified and unmodified fibers. Results showed that in comparison to control concrete sample, addition of modified hydrophilic fibers to concrete enhances compressive, tensile and flexural strength of concrete by 11%, 43% and 75% respectively. It was found that compressive, tensile and flexural strength of concrete samples containing the chemically modified fibers were respectively higher by 5%, 8% and 5% in comparison to the concrete samples containing unmodified hydrophobic fibers. Addition of fibers is more effective in enhancement of flexural strength of resultant concrete. This is due to the fiber bridging phenomena that prevent both crack formation and propagation. Addition of fibers also improves load bearing capacity of the resultant concrete, which in turn leads to enhancement of flexural strength of the concrete. Results also showed that addition of hydrophobic polypropylene fibers leads to 66% increase in the flexural strength of the samples. The increase in flexural strength of the concrete samples containing hydrophilic fibers in comparison to the control sample was found to be 75%.

[1] Mobasher B. Mechanics of fiber and textile reinforced cement composites: CRC press; 2011.
[2] Afroughsabet, vahid. 2016 High-performance fiber-reinforced concrete: a review. J mater sci, Vol. 51, pp. 6517–6551.
[3] ASTM D 7508/D7508M-10(2015), Standard Specification for Polyolefin Chopped Strands for Use in Concrete.
[4] di Prisco M, Plizzari G, Vandewalle L. 2009 Fibre reinforced concrete: new design perspectives. Mater Struct, 42(9), 1261–81.
[5] Bentur A, Mindess S. Fibre reinforced cementitious composites: CRC Press; 2006.
[6] Yin S., Tuladhar R., Shi F., Combe M., Collister T., Sivakugan N., ''Use of macro plastic fibers in concrete: a review'', Construction and Building Materials, Vol.93, pp.180-188, 2015.
[7] Bagherzadeh R, Sadeghi A-H, Latifi M. Utilizing polypropylene fibers to improve physical and mechanical properties of concrete. Textile Research Journal 2012;82:88-96.
[8] Pakravan HR, Latifi M, Jamshidi M. Ductility improvement of cementitious composites reinforced with polyvinyl alcohol-polypropylene hybrid fibers. Journal of Industrial Textiles 2016;45:637-51.
[9] Yin S, Tuladhar R, Shanks RA, Collister T, Combe M, Jacob M, et al. Fiber preparation and mechanical properties of recycled polypropylene for reinforcing concrete. Journal of Applied Polymer Science 2015;132.
[10] Bagherzadeh R, Sadeghi A-H, Latifi M. Utilizing polypropylene fibers to improve physical and mechanical properties of concrete. Textile Research Journal 2012;82:88-96.
[11] Peled A, Guttman H, Bentur Atopftotreicc. Treatments of polypropylene fibres to optimize their reinforcing efficiency in cement composites. Cement and Concrete Composites 1992;14:277-85.
[12] McIntyre JE. Synthetic fibres: Nylon, polyester, acrylic, polyolefin: Taylor & Francis US; 2005.
[13] Felekoglu B, Tosun K, Baradan B. A comparative study on the flexural performance of plasma treated polypropylene fiber reinforced cementitious composites. Journal of Materials Processing Technology 2009;209:5133-44.
[14] Ranjbar N, Talebian S, Mehrali M, Kuenzel C, Cornelis Metselaar HS, Jumaat MZ. 2016 Mechanisms of interfacial bond in steel and polypropylene fiber reinforced geopolymer composites. Composites Science and Technology;122:73-81.
[15] Ochoa-Putman C, Vaidya UK. 2011 Mechanisms of interfacial adhesion in metal–polymer composites – Effect of chemical treatment. Composites Part A: Applied Science and Manufacturing;42:906-15.
[16] Peled A, Guttman H, Bentur A. 1992 Treatment of Polypropylene fibers to optimize their reinforcing efficiency in cement composites. Cem Concr Compos;4:14277-85.
[17] Alberti. M.G, Enfedaque. A, Gálvez J.C. 2016 Fracture mechanics of polyolefin fibre reinforced concrete: Study of the influence of the concrete properties, casting procedures, the fibre length and specimen size. Engineering Fracture Mechanics, Vol. 154, pp. 225–244
[18] Fourne F. Synthetic Fibers, Machines and Equipment, Manufacture, Properties, Handbok for Plant Engineering. Machine Design, and Operation, Hanswer Publishers, Munich 1999.
[19] ASTM D 3822/D3822M-14, Standard Test Method for Tensile Properties of Single Textile Fibers.
[20] Banthia N, Gupta R. 2006 Influence of polypropylene fiber geometry on plastic shrinkage cracking in concrete. Cement and Concrete Research;36:1263-7.
[21] Alomayri T, Assaedi H, Shaikh FUA, Low IM. 2014 Effect of water absorption on the mechanical properties of cotton fabric-reinforced geopolymer composites. Journal of Asian Ceramic Societies;2:223-30.
[22] ACI Committee 211, ACI 211.1-91 (R2009), Standard practice for selecting proportions for normal, Heavyweight, and Mass Concrete.
[23] ASTM C39/C39M-18, Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens.
[24] ASTM C496/C496M-11, Standard test for splitting tensile strength of cylindrical concrete specimens.
[25] ASTM C1018-97, Standard Test Method for Flexural Toughness and First-Crack Strength of Fiber-Reinforced Concrete (Using Beam with Third-Point loading).
[26] López-Buendía AM, Romero-Sánchez MD, Climent V, Guillem C. Surface treated polypropylene (PP) fibres for reinforced concrete. Cement and Concrete Research 2013;54:29-35.
[27] Zhang C, Gopalaratnam V, Yasuda H. Plasma treatment of polymeric fibers for improved performance in cement matrices. Journal of Applied Polymer Science 2000;76:1985-96.