ارزیابی هیدرولیکی آبگیری جانبی با لوله از کانال با استفاده از مدل عددی

نوع مقاله : پژوهشی اصیل (کامل)

نویسندگان
1 دانشگاه تربیت مدرس تهران
2 دانشگاه حکیم سبزواری
چکیده
آبگیر جانبی با لوله نوعی سازه هیدرولیکی است که در آبگیری از رودخانه­ها و کانال­های انتقال آب در مناطقی که توپوگرافی امکان احداث کانال جهت آبگیری را فراهم نمی­سازد، به کار برده می­شود. در مطالعه حاضر به بررسی عددی برخی از پارامترهای مؤثر بر راندمان آبگیری جانبی با لوله در یک کانال مستقیم روباز با استفاده از نرم‌افزار FLOW3D پرداخته شده است. این پارامترها در سه گروه، شامل جهت قرارگیری لوله آبگیر نسبت به راستای جریان اصلی، خصوصیات دهانه لوله آبگیر و نیز موقعیت قرارگیری دهانه لوله آبگیر در نظر گرفته شده است. بررسی­ها نشان داد که جریان انحرافی با تغییر خصوصیات دهانه لوله آبگیر، بسته به زاویه آبگیری رفتار متفاوتی را از خود نشان خواهد داد. مشاهدات نشان داد در حالتی که فرورفتگی لوله آبگیر تا حداکثر 40 درصد عرض کانال اصلی ­باشد و آبگیری از تراز نسبی ارتفاعی 28/0 تا 57/0 عمق آب نسبت به کف کانال انجام شود، آبگیری راندمان قابل قبولی خواهد داشت. زمانی که لوله آبگیر در نزدیکی سطح جریان قرار می­گیرد ضریب پادرسوبی (λ) بهترین مقدار را خواهد داشت، هر چند که در این شرایط لوله آبگیر بیشتر در معرض نوسانات سطح جریان قرار دارد و ممکن است باعث بروز مشکلات اجرایی در آبگیری شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Hydraulic Evaluation of Lateral Pipe-intake from Open Channel by Numerical Simulation

نویسندگان English

Mahmood Rahmani Firozjaei 1
Ehsan Behnamtalab 2
Seyed ali akbar Salehi neyshaburi 1
1 Tarbiat Modares University of Tehran
2 Hakim Sabzevari University
چکیده English

Lateral Intake which uses a pipe is a hydraulic structure that has been utilized in water intake from rivers and channels, especially in those situations in which the area topography doesn’t allow to build a lateral channel for water intake. This study deals with the numerical investigation of effective geometrical parameters on lateral intake efficiency with a pipe in a rectangular open channel by using Flow3D software. The parameters that studied, are including the direction of the pipe intake respect to the main channel, the position of the pipe intake entrance in the width of the main channel, the position of the pipe intake entrance in the water depth, the diameter of the pipe intake and the shape of the pipe intake entrance. The comparison of the diverted discharge results for different levels of the pipe intake indicated that if the water intake is placed at relative height level of 0.28 to 0.57 of the water depth, the diverted discharge would be more than others. Furthermore, by comparing anti-sediment coefficient for different levels demonstrate that if the pipe intake locates near the surface of the flow, anti-sediment coefficient will have an acceptable value.

کلیدواژه‌ها English

Numerical simulation
Pipe Intake
Level of Pipe Intake
Intake Angle
Anti-sediment Coefficient
[1] Kasthuri, B., & Pundarikanthan, N. V. (1987). Discussion of “Separation zone at open-channel junctions” by James L. Best and Ian Reid (November, 1984). Journal of Hydraulic Engineering, 113(4), 543-544.
[2] Neary, V.S., Sotiropoulos, F. and Odgaard, A.J., 1999. Three-dimensional numerical model of lateral-intake inflows. Journal of Hydraulic Engineering, 125(2), pp.126-140.
[3] Barkdoll, B. D., Ettema, R., & Odgaard, A. J. (1999). Sediment control at lateral diversions: Limits and enhancements to vane use. Journal of hydraulic engineering, 125(8), 862-870.
[4] Ramamurthy, A. S., Qu, J., & Vo, D. (2007). Numerical and experimental study of dividing open-channel flows. Journal of Hydraulic Engineering, 133(10), 1135-1144.
[5] Goudarzizadeh R, Hedayat N, & Jahromi S (2010) Three-dimensional simulation of flow pattern at the lateral intake in straight path, using finite-volume method. World Academy of Science, Engineering and Technology, 47, 656-661.
[6] Seyedian S M, Bajestan M S, Farasati M (2014) Effect of bank slope on the flow patterns in river intakes. Journal of Hydrodynamics, Ser. B, 26(3), 482-492.
[7] Mirzaei, S.H.S., Ayyoubzadeh, S.A. and Firoozfar, A.R., 2014. The Effect of Submerged-Vanes on Formation Location of the Saddle Point in Lateral Intake from a Straight Channel. American Journal of Civil Engineering and Architecture, 2(1), pp.26-33.
[8] Asnaashari A, Merufinia E (2015). Numerical Simulation of Velocity Distribution in the River Lateral Intake Using the SSIIM2 Numerical Model. Cumhuriyet Science Journal, 36(3): 1473-1486.
[9] Biswal, S.K., Mohapatra, P. and Muralidhar, K., 2016. Hydraulics of combining flow in a right-angled compound open channel junction. Sadhana, 41(1), pp.97-110.
[10] Ouyang, H.T, Lin, C. P. (2016). Characteristics of interactions among a row of submerged vanes in various shapes. Journal of Hydro-environment Research, In press.
[11] Schindfessel, L., Creëlle, S. and De Mulder, T., (2017). How Different Cross-Sectional Shapes Influence the Separation Zone of an Open-Channel Confluence. Journal of Hydraulic Engineering, 143(9), p.04017036.
[12] Gómez-Zambrano, H.J., López-Ríos, V.I. and Toro-Botero, F.M., 2017. New methodology for calibration of hydrodynamic models in curved open-channel flow. Revista Facultad de Ingeniería Universidad de Antioquia, (83), p.82.
[13] Haddad H, Ahmad E, Azizi, K (2017) Numerical simulation of the inlet sedimentation rate to lateral intakes and comparison with experimental results, 5(1): 464 - 472.
[14] Anjum, N., Ghani, U., Ahmed Pasha, G., Latif, A., Sultan, T. and Ali, S., 2018. To Investigate the Flow Structure of Discontinuous Vegetation Patches of Two Vertically Different Layers in an Open Channel. Water, 10(1), p.75.
[15] Zahiri, A. and Najafzadeh, M., 2018. Optimized expressions to evaluate the flow discharge in main channels and floodplains using evolutionary computing and model classification. International Journal of River Basin Management, 16(1), pp.123-132.
[16] Indlekofer, H.; Robinson, S.; Rouvé, G., 1975. On the Transport of Bed-Load into Channel Branches and the Regulation by Inducing Artificial Secondary Flow. In Proceedings of 9th International Congress of Irrigation and Drainage, Moscow.
[17] Rahmani Firozjaei, M., Mohajeri, S.H., Salehi Neyshabouri, S.A.A., 2017. The importance of lateral water intake angle on flow patterns and sediment transport. In Proceedings of 37th IAHR World Congress, Kuala Lumpur, Malaysia.
[18] Abdelaziz, Shokry, Minh-Duc Bui, and Peter Rutschmann. (2014) "Numerical simulation of scour development due to submerged horizontal jet." River Flow 2010: 1597-1604.
[19] Hussain, A., Ahmad, Z., & Asawa, G. L. (2010). Discharge characteristics of sharp-crested circular side orifices in open channels. Flow Measurement and Instrumentation, 21(3), 418-424.
[20] Van Rijn, L.C., 1984. Sediment transport, part I: bed load transport. Journal of hydraulic engineering, 110(10), pp.1431-1456.