بررسی آزمایشگاهی تأثیر نحوه قرارگیری ژئوتکستایل در ظرفیت باربری پی روی خاک مسلح

نوع مقاله : پژوهشی اصیل (کامل)

نویسندگان
دانشگاه محقق اردبیلی
چکیده
در این تحقیق، اثر نحوه قرارگیری ژئوتکستایل در زیر پی در ظرفیت باربری آن بصورت آزمایشگاهی مورد بررسی قرار گرفته است. در این آزمایش‌ها، خاک زیر پی در یک جعبه فولادی به ابعاد 30×25×90 سانتی­متر و پی نواری بصورت یک ورق فولادی به ابعاد 2×5/7×25 سانتی­متر شبیه‌سازی شده­است. تأثیر قرارگیری مسلح­کننده‌ها در ظرفیت باربری پی با نه چینش مختلف بصورت تک لایه، دو لایه و سه لایه بصورت پیوسته و غیر‌پیوسته در بعد سوم، مورد بررسی قرار گرفته است. نتایج این تحقیق نشان می‌دهد استفاده از مسلح­کننده‌ها بصورت نوارهای منقطع که به‌صورت مناسبی در فضای سه‌بعدی توزیع شده باشند، باعث افزایش بازده تسلیح می‌گردد. در تسلیح چند لایه، استفاده از نوارهای گسسته مسلح‌­کننده‌ها به‌گونه‌ای که نواری واقع در اعماق لایه‌های مجاور زیر یکدیگر قرار نگیرند، باعث افزایش چشمگیر بازده تسلیح خواهد شد.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Laboratory Investigation of the Effect of the Geotextile Placement Pattern on the Bearing Capacity of Footing on Reinforced Sand

نویسندگان English

Ahad Ouria
Eliar Heidarly
University of Mohegan Ardabili
چکیده English

This paper presents the results of an experimental study on the effect of the pattern of reinforcement placement in reinforced soil on the bearing capacity of a strip foundation. A steel box filled with sand with the dimensions of 100×25×30 cm (Length, widths, and height) was used as the test base. The strip footing was simulated by a steel plate with dimensions of 25×7.5×2 cm. The sand used in this study was a poorly graded sand (SP) according to the unified soil classification system. A woven type geotextile was used as reinforcement. The effect of the reinforcement’s placement pattern on the bearing capacity of the foundation was investigated with nine different layouts including single, double, and three-layered reinforcement layouts. All the specimens prepared with a similar initial unit weight and void ratio. The tests conducted using a displacement-controlled loading device. The loading was applied with a rate of 1 mm/second. All the tests repeated at least three times to assure the accuracy and the repeatability of the results. The results of these tests indicated that the bearing capacity of the foundation increases as the length of the reinforcement increases but up to a certain limit and then remains constant. Although increasing the number of reinforcements layer increased the bearing capacity of the foundation, however, the effectiveness of the geotextile in the improvement of the bearing capacity decreased. Placement of the reinforcements in a discrete pattern improves the effectiveness of the reinforcement on the bearing capacity improvement. In multi-layer reinforcement layouts, using discrete strips of reinforcements in each elevation without overlapping with upper- and lower-layers of reinforcements, resulted the maximum efficiency of reinforcements influence in the improvement of the bearing capacity of the foundation. In the recent case, for a specific cross-sectional area of the reinforcement, the bearing capacity of the foundation could be increased by 20% using 17% less reinforcement. The results of this study indicate that the layout of the reinforcement pattern is a very important factor in the bearing capacity of foundations on reinforced soil. With a proper placement of reinforcements, the maximum bearing capacity of the foundation could be achieved with a minimum amount of reinforcement material.

کلیدواژه‌ها English

Reinforced soil
Geotextile
bearing capacity
Reinforcement Layout
[1] Toufigh, V., F. Saeid, V. Toufigh, A. Ouria, C. S. Desai, and H. Saadatmanesh, 2014 Laboratory study of soil-CFRP interaction using pull-out test Geomech. Geoengin. 9(3) :208–214. doi: 10.1080/17486025.2013.813650.

[2] Ouria, A., V. Toufigh, C. Desai, V. Toufigh, and H. Saadatmanesh, 2016 Finite element analysis of a CFRP reinforced retaining wall Geomech. Eng. 10(6) :757–774. doi: 10.12989/gae.2016.10.6.757.
[3] Fan, K., S. H. Liu, Y. P. Cheng, and Y. Wang, (2019) Sliding stability analysis of a retaining wall constructed by soilbags Géotechnique Lett. 9(3) :211–217. doi: 10.1680/jgele.19.00002.
[4] Broda, J. et al., 2019 Reclamation of abandoned open mines with innovative meandrically arranged geotextiles Geotext. Geomembranes (November) :0–1. doi: 10.1016/j.geotexmem.2019.11.003.
[5] Lee, S. L., M. A. Mannan, and W. H. Wan Ibrahim, (2019) Shear strength evaluation of composite pavement with geotextile as reinforcement at the interface Geotext. Geomembranes (October) :0–1. doi: 10.1016/j.geotexmem.2019.11.002.
[6] Sommers, A. N., & Viswanadham, B. V. S. 2009. Centrifuge model tests on the behavior of strip footing on geotextile-reinforced slopes. Geotextiles and Geomembranes, 27(6), 497-505.
[7] Goodarzi, S., and Shahnazari, H. 2019. Strength enhancement of geotextile-reinforced carbonate sand. Geotextiles and Geomembranes, 47(2), 128-139.
[8] Naeini, S. A., and Gholampoor, N. 2014. Cyclic behaviour of dry silty sand reinforced with a geotextile. Geotextiles and Geomembranes, 42(6), 611-619.
[9] Latha, G.M., and Somwanshi, A., 2009. Effect of reinforcement form on the bearing capacity of square footings on sand. Geotextiles and Geomembranes, 27(6), pp. 409-422.
[10] Hugher, J.M.O., and Withers, N.J., 1974. Reinforcing of soft cohesive soils with stone columns. Ground engineering, 7(3), pp. 42-49.
[11] Kourner, M., 2005. Designing with Geosynthetics (th ed), Prentice-Hall, New Jersey.
[12] Huang, C.C., and Tatsuoka, F., 1990. Bearing capacity of reinforced horizontal sandy ground. Geotextiles and Geomembranes, 9(1), pp. 51-82.
[13] Adams, M.T., and Collin, J.G., 1997. Large model spread footing load tests on geosynthetic reinforced soil foundations. Journal of Geotechnical and Geoenvironmental Engineering, 123(1), pp. 66-72.
[14] Alawaji, H.A., 2001. Settlement and bearing capacity of geogrid-reinforced sand over collapsible soil. Geotextiles and Geomembranes, 19(2), pp.75-88.
[15] Ghosh, A., Ghosh, A., and Bera, A.K., 2005. Bearing capacity of square footing on pond ash reinforced with jute-geotextile, Geotextiles and Geomembranes, 23(2), pp. 144-173.
[16] Oliaei, M., and Kouzegaran, S., 2017. Efficiency of cellular geosynthetics for foundation reinforcement. Geotextiles and Geomembranes, 45(2), pp. 11-22. doi: 10.1016/j.geotexmem.2016.11.001.
[17] Davarifard, S., and Tafreshi, S. N. M., 2015. Plate Load Tests of Multi-Layered Geocell Reinforced Bed Considering Embedment Depth of Footing. Procedia Earth and Planetary Science, 15, pp. 105-110. doi: 10.1016/j.proeps.2015.08.027.
[18] Kumar, P., and Rajkumar, R., 2012. Effect of geotextile on CBR strength of unpaved road with soft subgrade. Electronic Journal of Geotechnical Engineering, 17(1), pp. 1355-1363.
[19] Chen, Q., Hanandeh, S., Abu-Farsakh, M., and Mohammad, L., 2015. Performance evaluation of full-scale geosynthetic reinforced flexible pavement. Geosynthetics International, 25(1), pp. 26-36.
[20] Cicek, E., E. Guler, and T. Yetimoglu, 2015 Effect of reinforcement length for different geosynthetic reinforcements on strip footing on sand soil Soils Found. 55(4) :661–677. doi: 10.1016/j.sandf.2015.06.001.
[21] Mosallanezhad, M., Hataf N., and Ghahramani, A., 2008. Experimental study of bearing capacity of granular soils, reinforced with innovative grid-anchor system. Geotechnical and Geological Engineering, 26(3), pp. 299-312.
[22] Ouria, A., and Mahmoudi, A., 2018. Laboratory and numerical modeling of strip footing on geotextile-reinforced sand with cement-treated interface. Geotextiles and Geomembranes, 46(1), pp. 29-39
[23] Ouria, A., Emami, S., and Karamzadegan, S. Laboratory Investigation of the Effect of the Cement Treatment of Interface on the Pullout Capacity of Reinforcements, Amirkabir Journal of Civil Engineering, Articles in Press, Accepted Manuscript , Available Online from 23 October 2019, DOI: 10.22060/CEEJ.2019.16191.6149
[24] Toufigh, V., A. Ouria, C. S. Desai, N. Javid, V. Toufigh, and H. Saadatmanesh, 2016 Interface behavior between carbon-fiber polymer and sand J. Test. Eval. 44(1) doi: 10.1520/JTE20140153.
[25] Yetimoglu, T., Jonathan, T.H.Wu., and Saglamer, A., 1994. Bearing capacity of rectangular footings on geogrid-reinforced sand. Journal of Geotechnical Engineering, 120(12), pp. 2083-2099.
[26] Singh, P., and Gill, K., 2012. CBR improvement of clayey soil with Geogrid Reinforcement. International Journal of Emerging Technology and Advanced Engineering, 2(6), pp. 456-462.
[27] Strahler, A. W., Walters, J. J., and Stuedlein, A. W., 2016. Frictional resistance of closely spaced steel reinforcement strips used in MSE walls’, Journal of Geotechnical and Geoenvironmental Engineering, 142(2), p. 04016030.
[28] Broda, J., Franitza, P., Herrmann, U., Helbig, R., Große, A., Grzybowska-Pietras, J., and Rom, M., 2019. Reclamation of abandoned open mines with innovative meandrically arranged geotextiles. Geotextiles and Geomembranes. (November), pp. 0-1. dio: 10.1016/j.geotexmem.2019.11.003.
[29] Fan, K., Liu, S. H., Cheng, Y. P., and Wang, Y., 2019. Sliding stability analysis of a retaining wall constructed by soilbags. Géotechnique Letters, 9(3), pp. 211-217. doi: 10.1680/jgele.19.00002.
[30] Dixon, N., G. Fowmes, and M. Frost, (2017) Global challenges, geosynthetic solutions and counting carbon Geosynth. Int. 24(5) :451–464. doi: 10.1680/jgein.17.00014.
[31] ASTM D 2487-11. 2011 Standard Classification of Soils for Engineering Purposes (Unified Soil Classification System). American society for testing materials.
[32] ASTM D 3080-04. 2004 Standard Test Method for Direct Shear Test of Soils Under Consolidated Drained Conditions, American society for testing materials.
[33] ASTM D 2216-05. 2005 Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass. American society for testing material.
[34] ASTM C 127-07. 2007 Standard test method for Density, Relative Density (specific gravity), and absorption of Ccoarse Aggregate, American society for testing materials.
[35] ASTM D4595-11. 2011 Standard Test Method for Tensile Properties of Geotextiles by the Wide-Width Strip Method, American society for testing materials.
[36] ASTM D5321, Standard Test Method for Determining the Shear Strength of Soil-Geosynthetic and Geosynthetic-Geosynthetic Interfaces by Direct Shear, ASTM International, West Conshohocken, PA,
[37] ASTM D5261-10(2018), Standard Test Method for Measuring Mass per Unit Area of Geotextiles, ASTM International, West Conshohocken, PA, 2018
[38] Muir Wood, D. 2009. Geotechnical Modelling.
[39] R.K. Dixit, J.N. Mandal, Dimensional analysis and modelling laws for bearing capacity of reinforced and unreinforced soil, Constr. Build. Mater. 7 (1993) 203–205.
[40] Altaee, A., and , Fellenius,B. Physical modeling in sand, Canadian Geotechnical Journal, 1994, 31(3): 420-431, https://doi.org/10.1139/t94-049.
[41] Been, K., and Jefferies, M.G. 1985. A state parameter for sands.Geotechnique, 35: 99-112.
[42] Roscoe, K.H, and, Poorooshasb,H. 1963 fundamental principle of similarity in model test for earth pressure problems. In Proceedings of the 2nd Asian Regional Conference on Soil Mechanics, Bangkok, Thailand. Vol. 1. pp. 134-140 31(3): 420-431.