ارزیابی کمانشی نمونه سیلوهای استوانه ای ورق صاف فولادی دارای فرورفتگی در محل درز جوش پیرامونی تحت بار تخلیه

نوع مقاله : پژوهشی اصیل (کامل)

نویسندگان
دانشکده مهندسی عمران، دانشگاه صنعتی شریف
چکیده
سیلوهای استوانه ­ای به ­عنوان مهم­ترین سازه در ذخیره و نگهداری مواد دانه ­ای شناخته می ­شوند. با توجه به کارکرد این سازه ­ها، بارهای ناشی از فرآیند بارگیری و تخلیه محتویات، اصلی ­ترین بارگذاری در طرح سیلوها بشمار می­ آیند. ازطرفی، معمولاً فشار بزرگ­تری طی مرحله تخلیه در قیاس با مرحله بارگیری بر جداره سازه وارد می­ شود؛ از این رو، اساس طرح سیلوها بر پایه فشارهای تخلیه می ­باشد. بنابر ضخامت اندک جداره، کنترل سیلوهای فولادی دربرابر خرابی کمانشی حائز اهمیت است. فشار نرمال محتویات و ویژگی اصطکاکی دانه ­ها، جداره سازه را تحت فشار محوری و کشش پیرامونی قرار می دهد. بدین ترتیب تحت بارگذاری تخلیه، تحلیل کمانشی سیلوها تحت فشار محوری توأم با فشار داخلی مطرح است. در سیلوهایی که باریکه­ های سازنده جداره از طریق جوشکاری در کنار یکدیگر قرار می ­گیرند، فرورفتگی موضعی در محل درزِ جوش به­ عنوان یکی از اَشکال شناخته ­شده نقص هندسی به حساب می ­آید. وجود نقص هندسی می ­تواند منجر به کاهش قابل توجه در ظرفیت کمانشی سازه گردد. آیین­ نامه اروپا به ­عنوان پیشرفته­ ترین آیین ­نامه در زمینه طرح سیلوهای فولادی، روشی دستی جهت طرح کمانشی پوسته ­های استوانه ­ای تحت فشار محوری همزمان با فشار داخلی ارائه می ­نماید. در مطالعه حاضر، با استفاده از تحلیل ­های المان محدود، ضمن درنظرگیری اثر نقص هندسی در محل درزِ جوش به ­عنوان پارامتر اصلی مورد بررسی، روش طرح آیین ­نامه ارزیابی می ­شود. بدین ترتیب ابتدا به کمک تحلیل ­های خطی و غیرخطی المان محدود، رفتار کمانشی و پس-کمانشی نمونه سیلوهای مفروض به­دقت تبیین می ­گردد؛ و در گام بعد، روش تحلیل دستی آیین­ نامه در مقابل نتایج تحلیل­ های کامپیوتری مورد مقایسه قرار می­ گیرد. بر این اساس و در محدوده مطالعه انجام شده، روش طرح دستی آیین ­نامه تنها حدود 13 تا 32 درصد، ظرفیت کمانشی را در جهت ایمنی، کمتر از روش کامپیوتری تخمین می ­زند و لذا عملکردی رضایت ­بخش دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Discharge buckling assessment of example cylindrical steel flat-sheet silos with depressions in circumferential welded joints

نویسندگان English

Alireza Moazezi Mehretehran
Shervin Maleki
Department of Civil Engineering, Sharif University of Technology
چکیده English

Steel cylindrical silos are key storages in many industries. They can be composed of flat or corrugated sheets. To construct these structures, steel sheets may be welded or bolted to each other. This study addresses steel welded silos with flat sheets. Different loads, such as, filling and discharge loads, wind load, seismic load and thermal loads should be considered in design of silos. Nevertheless, during the life cycle of a silo, filling and discharge of particulate solids exert the most frequent loads on the silo walls. Due to larger values of discharge pressures as compared with those of filling pressures, discharge loads are primarily considered for structural design of silos.

Due to small wall thickness, buckling resistance is of vital importance in steel silos design. Ensiled materials exert normal pressures and frictional tractions on silo walls. Accordingly, during discharge process, meridional buckling resistance of shell walls concurrent with internal pressures should be assessed. It is well known that buckling strength is very sensitive to geometric imperfections in shell structures. In welded silos, the most regular and well-defined imperfection is local depressions existing in circumferential welded joints due to the plate rolling process and shrinkage of the weld. The assumed shape given for this type of imperfection in the literature were adopted throughout the paper.

Eurocode as the most advanced and pioneering standard on the design of steel silos, provides a hand design procedure for buckling evaluation of steel silos under discharge loads. To assess the procedure, a full suite of computational shell buckling calculations was performed with special emphasis on the effect of aforementioned geometric imperfection. A slender, an intermediate slender and a squat silo were considered for the assessments. Linear elastic Bifurcation Analysis with Imperfections (LBIA) and Geometrically and Materially Non-linear Analysis with Imperfections (GMNIA) were carried out for each structure. Sample silos were loaded in accordance to the pressure distribution proposed in the Eurocode. By assuming strake’s height of 2 meters, uniform depressions were simulated in circumferential welded joints of each silo. Three different Fabrication Quality Classes (FQCs) denoted by FQC A, B and C in a descending order from Excellent to Normal Class were introduced in the Standard. The imposed depression amplitudes were calculated in accordance to FQCs of the silos.

Considering the results obtained, the LBIA buckling modes show several circumferential buckling waves at the first welded joint of each silo from the base. Lowering the FQC leads to the decrease in number of circumferential waves and to the development of buckling waves at the location of second and third welded joints. Nevertheless, the more sophisticated GMNIA analyses predict elastic-plastic buckling mode in the form of diamond pattern concentered at the first welded joint of the silos from the base, irrespective of selected FCQ. However, for the slender silo the two upper welded joints are also interact during buckling. With respect to the design buckling resistance ratios (rRd) obtained by hand calculations and through non-linear analyses, the former method has predicted rRd values in the range from 13% to 32% lower than those of GMNIA. Therefore, hand design procedure of Eurocode produced satisfactory results, without high conservatism. However, more researches on this issue can enhance the reliability of conclusions made with respect to the Eurocode provisions.

کلیدواژه‌ها English

Steel cylindrical silos
Geometric imperfection
Buckling
Eurocode
Discharge pressure
[1] J.M. Rotter, J.-G. Teng, Elastic stability of cylindrical shells with weld depressions, J. Struct. Eng. 115 (1989) 1244–1263.
[2] J.M. Rotter, Q. Zhang, Elastic buckling of imperfect cylinders containing granular solids, J. Struct. Eng. 116 (1990) 2253–2271.
[3] S. Maleki, A.M. Mehretehran, 3D wind buckling analysis of steel silos with stepped walls, Thin-Walled Struct. 142 (2019) 236–261.
[4] S. Maleki, A.M. Mehretehran, 3D wind buckling analysis of long steel corrugated silos with vertical stiffeners, Eng. Fail. Anal. 90 (2018) 156–167.
[5] A.M. Mehretehran, S. Maleki, 3D buckling assessment of cylindrical steel silos of uniform thickness under seismic action, Thin-Walled Struct. 131 (2018) 654–667.
[6] Q. Cao, Y. Zhao, Buckling design of large eccentrically filled steel silos, Powder Technol. 327 (2018) 476–488.
[7] A.J. Sadowski, J.M. Rotter, Steel silos with different aspect ratios: I—Behaviour under concentric discharge, J. Constr. Steel Res. 67 (2011) 1537–1544.
[8] A.J. Sadowski, J.M. Rotter, Study of buckling in steel silos under eccentric discharge flows of stored solids, J. Eng. Mech. 136 (2010) 769–776.
[9] A.J. Sadowski, J.M. Rotter, Buckling of very slender metal silos under eccentric discharge, Eng. Struct. 33 (2011) 1187–1194.
[10] EN 1991-4, Eurocode 1: Actions on structures - Part 4: Silos and tanks., CEN, Brussels, 2006.
[11] EN 1993-1-6, Eurocode 3: Design of steel structures - Part 1-6: Strength and stability of shell structures., CEN, Brussels, 2007.
[12] EN 1993-4-1, Eurocode 3: Design of steel structures - Part 4-1: Silos., CEN, Brussels, 2007.
[13] J.M. Rotter, H. Schmidt, Buckling of Steel Shells: European Design Recommendations, 5th ed., European Convention for Constructional Steelwork (ECCS), 2008.
[14] C.Y. Song, J.G. Teng, Buckling of circular steel silos subject to code-specified eccentric discharge pressures, Eng. Struct. 25 (2003) 1397–1417.
[15] DIN 1055-6, Design loads for buildings: loads in silo bins., Deutsches Institut fur Normung, Berlin, 1987.
[16] ISO 11697, Basis for design of structures-loads due to bulk materials., 1995.
[17] ENV 1991-4, Eurocode 1: basis of design and actions on structures, Part 4: actions in silo and tanks., European Committee for Standardisation, Brussels, 1995.
[18] AS 3774-1996, Loads on bulk solids containers., Standards Australia, Sydney, 1996.
[19] C.Y. Song, Effects of patch loads on structural behavior of circular flat-bottomed steel silos, Thin-Walled Struct. 42 (2004) 1519–1542.
[20] A.M. Mehretehran, Discharge buckling assessment of slender silos considering different forms of Eurocode patch load., in: 3rd Int. Conf. Appl. Res. Struct. Eng. Constr. Manag., Tehran, 2019.
[21] Q.S. Cao, Y. Zhao, L. Xing, R. Zhang, B.Y. Li, Nonlinear buckling of cylindrical steel silos with fabrication cracks, Powder Technol. 353 (2019) 219–229.
[22] J.-G. Teng, J.M. Rotter, Buckling of pressurized axisymmetrically imperfect cylinders under axial loads, J. Eng. Mech. 118 (1992) 229–247.
[23] Dassault Systèmes Simulia, Abaqus CAE User’s Manual., 2012.
[24] A.J. Sadowski, J.M. Rotter, Solid or shell finite elements to model thick cylindrical tubes and shells under global bending, Int. J. Mech. Sci. 74 (2013) 143–153.