تعیین شدت و محل ترک در تیر اویلر-برنولی، با استفاده از سیگنال حوزه زمانی پاسخ ارتعاش آزاد و بهینه سازی به روش ازدحام ذرات، تحت بار ضربه

نوع مقاله : پژوهشی اصیل (کامل)

نویسندگان
1 مربی دانشگاه عمران و توسعه همدان
2 استادیار، دانشکده فنی مهندسی، دانشگاه آزاد همدان
3 مربی، دانشکده فنی مهندسی، دانشگاه آزاد همدان
چکیده
در این مقاله روشی جهت تشخیص خرابی تیر اویلر-برنولی مبتنی بر ابر المان، ارائه شده است. روش ارائه شده با استفاده از سیگنال حوزه زمانی پاسخ ارتعاش آزاد، موقعیت و عمق ترک در تیر اولر – برنولیِ مدل شده با سختی اصلاح شده بر اساس مدل فنر پیچشی را، با سرعت و دقت بالا ارائه می­دهد. پاسخ­های تاریخچه زمانی همان شتاب­ در لبه المان­های الاستیک تیر است که در این پژوهش در معرض بار ضربه، اندازه­گیری شده­اند. شتاب­های این سازه از روش انتگرال­گیری زمانی نیومارک-بتا محاسبه می­گردد. در ابتدا تابع هدف مسئله تشخیص خرابی، جهت بهینه­سازی به روش الگوریتم ازدحام ذرات، تعریف شده و با حل مسئله بهینه­سازی در محیط متلب، شدت و محل ترک­های عرضی محاسبه می­شود. به منظور ارزیابی دقت روش ارائه شده، 3 نمونه تیر در نظر گرفته شده است. نتایج حاکی از آن است که پس از حداکثر 50 بار اجرای الگوریتم، خطای محاسباتی کمتر از 10 درصد در داده­های محل و عمق ترک وجود خواهد داشت.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Determining the severity and location of cracks in the Euler-Bernoulli beam, using the time domain signal of free vibration response and particle optimization method, under impact load

نویسندگان English

elnaz keihani 1
mohsen mehrjoo 2
mehdi kheirkhah 3
1 instructor , Omran Tose`e Univesity, hamedan
2 Assistant professor, faculty of engineering of Hamden Islamic Azad University, Hamden, Iran
3 Instructor, faculty of engineering of Hamden Islamic Azad University, Hamden, Iran
چکیده English

In this paper, a crack detection method is presented to detect Euler-Bernoulli beams containing arbitrary number of transverse cracks. The proposed method uses the time domain signal of the free vibration response to provide the position and depth of cracking of the Euler-Bernoulli beam that is modeled with a modified stiffness using the Spring model, with high accuracy and precision. The time history responses used in this paper are nodal computational accelerations at certain points of the beam exposed to impact load. The acceleration of the nodes is calculated with the Newmark beta method at the edge of the elastic beam`s superelements. Initially, using the computational time history of the damaged beam and the analytical model of the Euler-Bernoulli beam, the objective function of the failure detection problem, to be optimized by particle swarm algorithm, is defined and, intensity and location of transverse cracks are calculated by solving the optimization problem in Matlab environment. In order to determine the accuracy of the proposed method, three beam samples with different cracks and loadings are considered. In the first sample, the crack supposed to be in the superelements of beam and the beam considered to be with four elements as superelements. The second one has ten elements and same loading as previous. The third one has twenty elements and the loading is on the second element. All of the loadings are impulse loads. The comparison of the results of a four elements beam with the primitive conditions shows that accuracy of the deducted results were exactly matched. For the ten element beam, the results were satisfying but in the twenty element beam with asymmetric loading, obtained results indicate imprecise match.

To determine the accuracy of the developed model in real environmental conditions, different percentages of noise were added to the data of all three samples. These noise addition to data, contain 1, 3, 5 Percentages of noise. The results show that the model presented in the presence of noise also provides accurate results and the model is not sensitive to the presence of noise in the data applied to three samples. Considering different number of elements in each sample, no convergence was observed, Also the results were not sensitive to the location of impact load applied on the samples.

The results of this study indicated that asymmetric cracking and loading variation are very effective in predicting beam failure. The results also indicate that variable reduction is very effective on the accuracy of results.

Having more cracks and therefore more elements to analyze will yield to less accurate results. To lessen these inaccuracies, it can be practical to achieve better results by assuming the location of crack is constant in the element length if the depth of crack be the matter of importance.

The number of iterations that have been executed, indicate that the pace of convergences in the developed process is less than when PSO deployed solely. This speed rate for obtaining results makes the developed method practical for solving crack detection problems in structures.

کلیدواژه‌ها English

Damage detection
Free Vibration Response
Pso algorithm
Newmark Beta method
Optimization
[1] Chintalapudi, K., Fu, T., Paek, J., Kothari, N., Rangwala, S. & Caffrey, J. 2006 Monitoring civil structures with a wireless sensor network. IEEE Internet Computing,10 (2):26-34.
[2] Kaphle, MR. 2012 Analysis of acoustic emission data for accurate damage assessment for structural health monitoring applications. Queensland University of Technology.
[3] Seyedpoor, S., Ahmadi, A. & Pahnabi, N. 2019 Structural damage detection using time domain responses and an optimization method. Inverse Problems in Science and Engineering, 27(5):669-88.
[4] Kim, J-T., Park, J-H. & Lee, B-J. 2007 Vibration-based damage monitoring in model plate-girder bridges under uncertain temperature conditions. Engineering Structures, 29 (7):1354-65.
[5] Shi, Z., Law, S., & Zhang, L. 2000 Damage localization by directly using incomplete mode shapes. Journal of Engineering Mechanics, 126(6):656-60.
[6] Tang, J. 2005 editor Frequency response based damage detection using principal component analysis. 2005 IEEE International Conference on Information Acquisition, IEEE.
[7] Mohan, S., Maiti, DK. & Maity, D. 2013 Structural damage assessment using FRF employing particle swarm optimization. Applied Mathematics and Computation, 219(20):10387-400.
[8] Rezaifar, O. & Doost Mohammadi, M.R. 2016 Damage Detection Of Axially Loaded Beam: A Frequency-Based Method. Civil Engineering Infrastructure Journal. 165-172 J
[9] Khaji, N., & Mehrjoo, M. 2014 Crack detection in a beam with an arbitrary number of transverse cracks using genetic algorithms. Journal of Mechanical Science and Technology, 28(3):823-36.
[10] Bandara, RP., Chan, TH. & Thambiratnam, DP. 2014 Frequency response function based damage identification using principal component analysis and pattern recognition technique. Engineering Structures, 66:116-28.
[11]A. Kaveh, S. R. Hosseini Vaez, P. Hosseini M & A. Fathali, 2019 A new two-phase method for damage detection in skeletal structures, Iranian Journal of Science and Technology, Transactions of Civil Engineering, Vol. 43, Supplement 1, pp 49–65.
[12] Khanmirza, E., Khaji, N. & Majd, VJ. 2011 Model updating of multistory shear buildings for simultaneous identification of mass, stiffness and damping matrices using two different soft-computing methods. Expert Systems with Applications, 38(5):5320-9.
[13] Livani, M, A. & Khaji, N. Zakian, P. 2017. Damage identification of cracks in structures via extended finite element method and particle swarm optimization. Modares Civil Engineering Journal. Vol.16, No.5, November. [in Persian]
[14] Ghadimi S, Kourehli S.S. Multiple crack identification in Euler beams using extreme learning machine, KSCE Journal of Civil Engineering, 21 (2017) 389–396.
[15] Mehrjoo, M. & Khaji, N., Ghafory-Ashtiany M. 2013 Application of genetic algorithm in crack detection of beam-like structures using a new cracked Euler–Bernoulli beam element. Applied Soft Computing, 13(2):867-80.
[16] Ostachowicz, W., Krawczuk, M. 1991 Analysis of the effect of cracks on the natural frequencies of a cantilever beam. Journal of sound and vibration, 150(2):191-201.
[17] Chandrupatla, TR., Belegundu, AD., Ramesh, T. & Ray, C. 2002 Introduction to finite elements in engineering. Prentice Hall Upper Saddle River, NJ.
[18] J. Kennedy, R. Eberhart. 1995 Particle Swarm Optimization. Proceedings of IEEE International Conference on Neural Networks, pp. 1942-1948
[19] Chopra, AK. 1995 Dynamics of structures: theory and applications to earthquake engineering. Prentice Hall.
[20] Rajasekaran, S. 2009 Structural Dynamics, Dynamic Force and Dynamic System. Theory and Application Using Mathematica and Matlab. Woodhead Publishing Series.
[21] Rajasekaran, S. 2009 Structural dynamics of earthquake engineering: theory and application using MATHEMATICA and MATLAB. Elsevier.
[22] Younesi, A. & Rezaifar, O. & Gholhaki, M. & Esfandiari, A. 2019. Structure Health Monitoring of a concrete-filled tube column. Magazine Of Civil Engineering. Pp 136-145.
[23] Younesi, A. & Rezaifar, O. & Gholhaki, M. & Esfandiari, A. 2019. Damage Detection in concret Filled tube cilumn based on experimentally modal data and wavelet technique. Mechanics of advanced composite structures .
[24] Ding, Z., Huang, M. & Lu, Z. 2016 Structural damage detection using artificial bee colony algorithm with hybrid search strategy. Swarm and Evolutionary Computation, 28:1-13.
[25] R. Ruotolo and C. Surace, Damage assessment of multiple cracked beams: Numerical results and experimental validation, J. Sound Vib., 206 (1997) 567-588.
[26] Escobar, J. Fierro, F. Gómez, R. 2004. Damage Detection In Building Structures. Canadian Earthquake Eng. Vancouver August 1-6.
[27] Marwala, T. Hunt, H. Fault Identification Using Finite Element Models And Neural Networks. Mechanical Systems and Signal Processing. Cambridge University Engineering Department Academic Press.