بررسی عددی پاسخ لرزه‌ای توربین‌های بادی فراساحلی با در نظر گرفتن اندرکنش بارهای محیطی

نوع مقاله : پژوهشی اصیل (کامل)

نویسندگان
1 استادیار دانشکده مهندسی عمران، دانشگاه علم و صنعت ایران
2 استاد، دانشکده مهندسی عمران، دانشگاه علم و صنعت ایران، تهران، ایران
3 فارغ التحصیل کارشناسی ارشد، دانشکده مهندسی عمران، دانشگاه علم و صنعت ایران، تهران
چکیده
در این تحقیق پاسخ لرزه‌ای توربین‌های بادی فراساحلی با استفاده از روش عددی بررسی شده است. جهت در نظر گرفتن شرایط اشباع بودن خاک از نرم افزار اپن‌سیز استفاده شده که به واسطه وجود مدل‌رفتاری‌های مخصوص خاک از جمله مدل‌رفتاری PDMY و المان‌های هم‌بسته جامد-سیال، توانایی خوبی در شبیه‌سازی روند تغییرات فشار آب حفره‌ای دارد. پس از صحت‌سنجی مدل عددی، تأثیر عواملی هم چون سایر بارهای محیطی (بار باد و بار موج) و نیز ماکزیمم شتاب زلزله اعمالی (PGA) بررسی شده است. نتایج نشان می‌دهد که در تحلیل لرزه‌ای توربین‌های بادی فراساحلی باید اندرکنش بارهای محیطی را در نظر گرفت و نمی‌توان به سادگی از اصل بر هم نهی استفاده کرد. هم‌چنین مشخص شد که رابطه بین ماکزیمم شتاب زلزله ورودی و پاسخ برج توربین به صورت غیر خطی است و از طرف دیگر با افزایش شتاب زلزله ورودی تأثیر اندرکنش خاک و شمع روی نسبت ru بیشتر می‌شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Investigating of the seismic response of offshore wind turbines considering the interaction of soil-pile-structure

نویسندگان English

alireza saeedi azizkandi 1
Mohammad hassan Baziar 2
Shervin Sadollahi 3
Ali Taji 3
1 Assistant Professor, school of civil engineering. Iran University of Science and Technology
2 Professor, Department of Civil Engineering, Iran University of Science and Technology
3 M.S. Student, Department of Civil Engineering, Iran University of Science and Technology
چکیده English

In this research, the seismic response of offshore wind turbines, considering the interaction of saturated soil-pile-structure, has been investigated using numerical method of finite element. OpenSees software has been used to consider the conditions of soil saturation and pore water pressure changes. Due to the existence of soil constitutive model in OpenSees, such as the PDMY model and coupled u-p elements, it has a good ability to model saturated soil and pore water pressure changes.For numerical verification, a centrifuge test carried out by Yu et al. was used. This test was carried out on an offshore wind turbine with tripod foundation, with a height of 13 meters and three piles, 0.5 in diameter and 3 meters in length with a triangular arrangement, and the response of the turbine tower and pore water pressure variations under the earthquake load have been investigated. In this experiment, blades, hub and Nacelle were simplified as a rigid mass on top of wind turbine tower and so large moment caused by the earthquake load was modeled on the foundation. For simulation and creating numerical model, only one half of the system was modeled using symmetry boundary condition. Soil 3D continuous medium was modeled through coupled u-p formulation correlated to saturated porous medium using PDMY constitutive model that has the ability to simulate sandy soil behaviour under cyclic loadings in drained and undrained condition. The model consisted of 14288 nodes and 12420 coupled u-p 3D elements for saturated soil part. Nonlinear beam-column elements were used for pile parts. For simulating actual size of pile cross-section, rigid beam elements perpendicular to the longitudinal axis of the piles were used. Actually these rigid elements were beam-column type that their stiffness is 10000 times larger than the stiffness of pile elements. One node of this elements was connected to the pile and the other node was tied to the soil node with same location through equal DOf constraint. Each pile with 3 meter in length consisted of 12 nonlinear beam-column elements. For half pile 65 rigid elements and for full pile 104 rigid elements was used to simulate actual size of pile cross-section. Wind load on tower is estimated by equation provided in DNV standard. Also the thrust force (force applied by the wind on the rotor of turbine) is calculated through the previous study (Leite) and using Manwell equation. Wave load is calculated by Morison equation and the kinematics of water particles are simulated by Airy wave theory (linear wave theory). After passing the verification stage, through the parametric study, the effect of other environmental loads (wind and wave load) and peak ground acceleration (PGA) on the seismic response of the offshore wind turbine are investigated. The results showed that in seismic analysis of offshore wind turbines, the interaction of environmental loads should be considered, and the Superposition Principle can not be easily applied. It was also found that the relationship between the peak ground acceleration and the turbine tower response is nonlinear. On the other hand, by increasing the PGA, the effect of soil-piles interaction on the ru ratio increases.

کلیدواژه‌ها English

Offshore wind turbine
OpenSees
PDMY constitutive model
soil-pile-Structure
wind and wave load
1. Petroleum, B., BP Statistical Review of World Energy June 2019. 2019.
2. Beiter, P.C., et al., 2017 Offshore Wind Technologies Market Update. 2018, National Renewable Energy Lab.(NREL), Golden, CO (United States).
3. Mostafaeipour, A., Feasibility study of offshore wind turbine installation in Iran compared with the world. Renewable and Sustainable Energy Reviews, 2010. 14(7): p. 1722-1743.
4. Kjørlaug, R.A., A.M. Kaynia, and A. Elgamal. Seismic response of wind turbines due to earthquake and wind loading. in Proceedings of the 9th international conference on structural dynamics, EURODYN. 2014.
5. Hacıefendioğlu, K. and F.J.C. Birinci, Seismic analysis of offshore wind turbine including fluid-structure-soil interaction. 2015. 1(4): p. 198-201.
6. Yang, H., et al., Dynamic reliability based design optimization of the tripod sub-structure of offshore wind turbines. Renewable Energy, 2015. 78: p. 16-25.
7. Yu, H., et al., Centrifuge modeling of offshore wind foundations under earthquake loading. Soil Dynamics and Earthquake Engineering, 2015. 77: p. 402-415.
8. Herrera, J., et al., Observations on the influence of soil profile on the seismic kinematic bending moments of offshore wind turbine monopiles. Procedia Engineering, 2017. 199: p. 3230-3235.
9. Zhang, L.-w. and X.J.C.O.E. Li, Dynamic analysis of a 5-MW tripod offshore wind turbine by considering fluid–structure interaction. 2017. 31(5): p. 559-566.
10. Wang, W., et al., Model Test and Numerical Analysis of a Multi-Pile Offshore Wind Turbine Under Seismic, Wind, Wave, and Current Loads. 2017. 139(3): p. 031901.
11. Wang, X., et al., Seismic response of offshore wind turbine with hybrid monopile foundation based on centrifuge modelling. Applied Energy, 2019. 235: p. 1335-1350.
12. OpenSees User Documentation.
13. Naqvi, S.K., Scale model experiments on floating offshore wind turbines. 2012.
14. Vugts, J., J. van der Tempel, and E. Schrama. Hydrodynamic loading on monotower support structures for preliminary design. in Proceedings of Special Topic Conference on Offshore Wind Energy. 2001.
15. ISO, I.J.B.S.I., 19901-1: 2005, Petroleum and natural gas industries-specific requirements for offshore structures-Part 1: Metocean design and operating conditions. 2005.
16. Baniotopoulos, C., C. Borri, and T. Stathopoulos, Environmental wind engineering and design of wind energy structures. Vol. 531. 2011: Springer Science & Business Media.
17. Sun, C. and V.J.E.S. Jahangiri, Fatigue damage mitigation of offshore wind turbines under real wind and wave conditions. 2019. 178: p. 472-483.
18. DNV, G.J.D.G.A., Høvik, Design of Offshore Wind Turbine Structures. Offshore Standard DNV-OS-J101. 2014.
19. Leite, O.B., Review of design procedures for monopile offshore wind structures. 2015.
20. Manwell, J.F., J.G. McGowan, and A.L. Rogers, Wind energy explained: theory, design and application. 2010: John Wiley & Sons.
21. Veritas, D.N.J.D.N.V.O., Norway, DNV-RP-C205 Environmental conditions and environmental loads. 2010.