ارزیابی عملکرد اتصال تیر به ستون مجهز شده به میراگر لوله ای فولادی بیضوی

نوع مقاله : پژوهشی اصیل (کامل)

نویسندگان
دانشگاه بیرجند
چکیده
میراگر لوله­ای فولادی به عنوان نوعی از میراگرهای غیرفعال جهت اتلاف انرژی لرزهای مورد استفاده قرار میگیرد بطوری که می‌تواند مقدار قابل ملاحظه‌ای از انرژی ورودی لرزه‌ای را بواسطه ایجاد تغییرشکل‌های پلاستیک در خود مستهلک نموده و در نتیجه از ایجاد آسیب و صدمات مخرب در سازهها جلوگیری نماید. در این تحقیق، میراگر لولهای فولادی با مقطع بیضوی بمنظور بهبود رفتار میراگر لولهای در جذب انرژی لرزهای پیشنهاد شده است. همچنین، استفاده از این میراگر پیشنهادی در اتصال گیردار تیر به ستون جهت بهبود عملکرد این اتصال ارائه شده است. ابتدا به منظور ارزیابی عملکرد میراگر لوله­ای بیضوی پیشنهادی، مدلسازی این میراگر تحت بارگذاری چرخه‌ای در نرم‌افزار اجزای محدودی آباکوس (ABAQUS) انجام‌شده است و سپس، عملکرد آن با نوع رایج میراگر لولهای با مقطع دایره‌ و وزن یکسان مقایسه شده است. نتایج نشان می‌دهد میزان استهلاک انرژی میراگر پیشنهادی بیضوی شکل 22 درصد بیشتر از میراگر دایره‌ای شکل می‌باشد و همچنین در میراگر پیشنهادی، توزیع تنش یکنواختتری نسبت به میراگر رایج لولهای مشاهده میشود. در ادامه این تحقیق، کارایی میراگر پیشنهادی در اتصال گیردار تیر به ستون ارزیابی شده است. برای نیل به این هدف، مقایسه عملکرد اتصال گیردار تیر به ستون مجهزشده به میراگر لوله‌ای بیضوی با میراگر شکافدار رایج در زیر بال تیر انجام شده است. نتایج ارزیابی نشان می‌دهد جذب انرژی اتصال با میراگر بیضوی 63 درصد بیشتر از همان اتصال مجهز شده با میراگر شکافدار می‌باشد. همچنین لنگر حدتسلیم و نهایی در اتصال مجهز شده به میراگر پیشنهادی نسبت به میراگر شکافدار به ترتیب حدود 82 درصد و80 درصد افزایش یافته است. در نهایت، مقایسه عملکرد اتصال مجهز شده به میراگر بیضوی با اتصال گیردار جوشی مستقیم تیر به ستون انجام شده است. نتایج نشان میدهد که جذب انرژی در اتصال گیردار مجهز شده به میراگر پیشنهادی بطور قابل ملاحظهای نسبت به اتصای جوشی افزایش داشته است.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

performance assessment of beam to column moment connection equipped with ellipse pipe steel damper

نویسندگان English

Javad Hassanzadeh
Seyyed Reza Sarafrazi
Mohsen Khatibinia
University of Birjand
چکیده English

The high ductile of steel moment-resisting frames (SMRFs) during earthquakes has been challenged due to the brittle fractures of their welded (rigid) beam to column connections. Consequently, SMRFs have suffered severe damages and have produced collapse in main structural members (such as beams and columns). During previous years, energy dissipative devices in connections have been developed by researchers to resolve the ductility problem in rigid beam to column connections of SMRFs. Circular pipe steel damper (CPSD) proposed as a type of steel damper can indicate and dissipate seismic energy mainly through inelastic deformation. Among steel dampers such as shear panel damper, the advantage of CPSD is to resiste applied load in all direction. Under cyclic loading the circular shape of CPSD can change to elliptical shape which causes an extra energy in its absorption capacity. The previous study indicated that the stress concentration was high at both ends in the loading direction. The maximum stress was also observed at lower ends in the direction of loading. Henec, finding the best shape of cross section can enhance the behaviour of pipe steel damper (PSD). In this study, ellipse PSD (EPSD) was proposed for improving rigid beam to column connections of steel structures. For investigating the performance of the proposed EPSD, the behavior of a rigid connection with the common slit steel damper (SSD) SSD was assessed subjected to cyclic load in ABAQUS software. The proposed EPSD has the same weight in comparison with that of the common CPSD. The results of assessment were shown that in the energy dissipation of the proposed EPSD and CPSD subjected to cyclic load is equal to 11.11 kJ and 9.11 kJ, respectively. Thus, the proposed damper in comparison with CPSD can effectively contribute to about 22% of the total dissipated energy. The distribution of stress in the proposed EPSD in comparison with that of CPSD was also uniformly caused in the hight of EPSD. Furthermore, the performance of a rigid beam to column connection equipped with the proposed EPSD and SSD in subjected to cyclic loading was compared. The results revealed that EPSD in the rigid connection increased to about 63% of the total dissipated energy. Due to the distribution of stresses in more area, the strength of the proposed damper increases. Finally, the performance of a rigid beam to column connection equipped with the proposed EPSD and the welded connection in subjected to cyclic loading effectively was compared. The results demonstrated that the connection equipped with the proposed EPSD colud withstand a large number of loading cycles until the failure. Therefore, the proposed EPSD can be used instead of welded connection in SMRFs.

کلیدواژه‌ها English

Circular pipe steel damper
ellipse shape
Dissipation of energy
Hysteresis behavior
[1] Wada, A., Huang, Y.H., Yamada, T., Ono, Y., Sugiyama, S., Baba, M., Miyabara, T. (1997), "Actual size and real time speed tests for hysteretic steel damper", Proceedings of Stessa, Vol. 97, pp. 778-785.
[2] Tadaki, K., Shigeki, I., Hisaya, K., Takuya, U., & Haruhito, O. (2000), “Experimental study on hysteresis damper with low yield strength steel under dynamic loading”, In Proceedings of 12th World Congress on Earthquake Engineering, Auckland, New Zealand.
[3] Tremblay, R., Timler, P., Bruneu, M., Filiatrault, A. (1995), “Performance of steel structures during the 1994 Northridge earthquake”, Canadian Journal of Civil Engineering, Vol. 22(2), pp. 338–360.
[4] Engelhardt, M.D., Winneberger, T., Zekany, A.J., Potyraj. T.J. (1998), “Experimental investigation of dogbone moment connections”, Engineering Journal AISC, pp. 128–39.
[5] Suita, K., Tamura, T., Morita, S., Nakashima, M., Engelhardt, M.D. (1999), “Plastic rotation capacity of steel beam-to-column connections using a reduced beam section and no weld access hole design”, Journal of Structural and Construction Engineering, Vol. 526(12), pp. 177–184.
[6] Oh, S.H., Kim, Y.J., Moon, T.S. (2007), “Cyclic performance of existing moment connections in steel retrofitted with a reduced beam section and bottom flange reinforcements”, Canadian Journal of Civil Engineering, Vol. 34(2), pp. 199–209.
[7] FEMA-350., Recommended Seismic Design Criteria for New Steel Moment Frame Buildings, (2000), SAC Joint Venture.
[8] Soong, T.T., Spencer, J.B.F. (2002), “Supplemental energy dissipation: state-of-the-art and state-of-the-practice”, Engireeng Structures, Vol. 24(3), pp. 243–259.
[9] Tsai, K., Chen, H., Hong, C. (1993), “Design of steel triangular plate energy absorbers for seismic resistant construction”, Earthquake Spectra, Vol. 9(3), pp. 505–528.
[10] Benavent Climent, A., Oh, S.H., Akiyama, H. (1998), “Ultimate energy absorption capacity of slit-type steel plates subjected to shear deformations”, Journal of Structural and Construction Engineering, Vol. 503(1), pp. 139–145.
[11] Lee, M.H., Oh, S.H., Huh, C., Oh, Y.S., Yoon, M.H., Moon, T.S. (2002), “Ultimate energy absorption capacity of steel plate slit dampers subjected to shear force”, International Journal of Steel Structures, Vol. 2(2), pp. 71–79.
[12] Benavent Climent, A. (2006), “Influence of hysteretic dampers on the seismic response of reinforced concrete wide beam-column connections”, Engineering Structures, Vol. 28(4), pp. 580–592.
[13] Chan, R.W.K., Albermani, F. (2008), “Experimental study of steel slit damper for passive energy dissipation”, Engineering Structures, Vol. 30(4), pp. 1058–1066.
[14] Kobori, T., Mirura, Y., Fukusawa, E., Yamada, T., Arita, T., Takenaka, Y. et al. (1992), “Development and application of hysteresis steel dampers”, In: Proceedings of 11th world conference on earthquake engineering, pp. 2341–2346.
[15] Sabelli, R., Mahin, S., Chang, C. (2003), “Seismic demands on steel braced frame buildings with buckling-restrained braces”, Engineering Structuers, Vol. 25(5), pp. 655–666.
[16] Iwata, M., Murai, M. (2006), “Buckling-restrained brace using steel mortar planks; performance evaluation as a hysteretic damper”, Earthquake Engineering and Structural Dynamics, Vol. 35(14), pp. 1807–1826.
[17] Tremblay, R., Bolduc, P., Neville, R., Devall, R. (2006), “Seismic testing and performance of buckling-restrained bracing systems”, Canadian Journal of Civil Engineering, Vol. 33(2), pp. 183–198.
[18] Wada, A., Huang, Y.H., Iwata, M. (2000), “Passive damping technology for building in Japan”, Progress in Structural Engineering and Materials, Vol. 2(3), pp. 335–350.
[19] Oh, S.H., Kim, Y.J., Ryu, H.S. (2009), "Seismic performance of steel structures with slit dampers", Engineering Structures, Vol. 31, pp. 1997-2008.
[20] Abebe, D.Y., Choi, J.H. (2012). “Structural performance evaluation on circular pipe steel damper”, In Proceedings of international :union: of materials research society–international conference in Asia.
[21] Abebe, D.Y., Jeong, S.J., Getahune, B.M., Segu, D.Z., Choi, J.H. (2014). “Study on hysteretic characteristics of shear panel damper made of low yield point steel”, Materials Research Innovations, Vol. 19(S5), pp. S5-902–S5-910.
[22] Abebe, D.Y., Kim, J. W. Gwak, G., Choi, J.H. (2019). “Low‑cycled hysteresis characteristics of circular hollow steel damper subjected to inelastic behavior”, International Journal of Steel Structures, Vol. 19(1): pp. 157–167.
[23] Khatibinia, M., Jalalipour, M. and Gharehbaghi, S. (2019), “Shape optimization of U-shaped steel dampers subjected to cyclic loading using an efficient hybrid approach”, Engineering Structuters, Vol. 197(5): 108874.
[24] Farahi Shahri, S., Mousavi, S. R. (2016). “Application of elliptic slits for development of slit damper in beam-to-column connection”. Modares Civil Engineering Journal, Vol. 16(1): pp. 93-105.
[25] Keykhosro Kiani, B., Hosseini Hashemi, B., Torabian, Sh. (2020). “Optimization of slit dampers to improve energy dissipation capacity and low-cycle-fatigue performance”. Engineering Structures, Vol. 214: 110609.
[26] Aminzadeh, M., Kazemi, H.S., Tavakkoli, S.M. (2020). “A numerical study on optimum shape of steel slit dampers”, Advances in Structural Engineering, Vol. 23(5): 136943322092728.