تشخیص خرابی در ساختمان پیش ساخته پانلی کامل بر مبنای نتایج آزمایشگاهی و روش تحلیلی آنالیز موجک پیوسته

نوع مقاله : پژوهشی اصیل (کامل)

نویسندگان
1 دانشجوی دکتری مهندسی سازه، دانشگاه سمنان، سمنان، ایران
2 دانشگاه سمنان، سمنان، ایران
چکیده
در این پژوهش به بررسی ارتعاشات آزاد یک ساختمان چهار طبقه با شرایط مرزی مشخص و پایش سلامت ساختمان بر مبنای نتایج آزمایشگاهی و به کمک روش تحلیلی آنالیز موجک پیوسته پرداخته و آسیب­هایی که ممکن است در این سازه­ها رخ دهند، مورد ارزیابی و تحلیل واقع شده­است. مدل­سازی ساختمان در نرم افزار اجزا محدود و با استفاده از مدل ساندویچی صورت پذیرفته است. در این ساختمان چهار طبقه، از ساندویچ پانلی با هشت لایه از جنس(پلی استایرن، بتن، فولاد، بتن) به­صورت متقارن استفاده و چهارده فرکانس طبیعی این سازه ساندویچی با مدل آزمایشگاهی مورد مقایسه قرار گرفته و شکل مودهای اصلی این ساختمان که در بررسی پایش سلامت این سازه تاثیر دارد، بدست آمده است. خطای کمتر از 2.5 درصد مطابقت مناسب بین نتایج دو مدل را آشکار می­نماید. با توجه به نتایج آزمایشگاهی، موقعیت خرابی به کمک تابع coif5 با پارامتر مقیاس 8 نسبت به بقیه توابع موجک با موفقیت شناسایی شده و اغتشاش بیشتری از ضرایب را در محل وقوع خرابی نشان می­دهد؛ بطوریکه ماکزیمم‌ها و مینیمم‌های نسبی پرش در ضرایب موجک، در محل وقوع خرابی‌ها اتفاق افتاده است و با در نظر گرفتن ماکزیمم یا مینیمم ضرایب موجک تولید شده در محل وقوع خرابی‌ها به عنوان مرکز خرابی، می‌توان مرکز خرابی‌ها را با خطای کمتر از %8 شناسایی نمود. همچنین اثر مودهای بالاتر در نمایش شدت خرابی محسوس­تر می­باشد بطوریکه در مود پیچشی سازه، ماکزیمم ضرایب موجک بزرگ­تر و شدت خرابی بیشتر نمایان شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Damage Detection in Precast Full Panel Building Based on Experimental Results and Continuous Wavelet Analysis Analytical Method

نویسندگان English

Mojtaba Hanteh 1
Omid Rezaifar 2
Majid Gholhaki 2
1 PhD candidate - Structure Engineering, Semnan University, Semnan, Iran
2 Associate Professor - Civil Engineering Department, Semnan University, Semnan, Iran
چکیده English

Damage occurrence is always inevitable in structures. So far, many examples of damage types in engineering structures have been recorded with many losses of human and financial. For this reason, the detecting of structural damages during its exploitation to provide safety with the lowest cost has been the subject of many researchers in the last two decades. In this regard, the wavelet transform is a powerful mathematical tool for signal processing, has attracted the attention of many researchers in the field of health monitoring of structures. Wavelets are a combination of a family of basic functions that are capable of detecting signals in the time (or location) and frequency (or scale) range. In fact, wavelet transform is based on the principle that any signal can be transformed into a set of local functions called wavelets. Any local feature of a signal can be analyzed using the corresponding wavelet functions. The wavelet transforms to the singularities points in the signals are sensitive and can be used to detect abrupt changes in modes, which often indicate damage. In this study, free vibrations of a four-story building with specified boundary conditions have been investigated and monitored the health of the building basis on experimental results using the continuous wavelet analytical method are studied and the damage that may occur in these structures has been evaluated and analyzed. Building modeling is done in finite element software using the sandwich model. In this four-story building, eight-layer sandwich panel (polystyrene, concrete, steel, concrete) is used symmetrically. The fourteen natural frequencies of the sandwich structure were compared with the experimental model. and the main modes of the structure obtained to influence the health of the structure. An error of less than 2.5% reveals a good match between the results of the two models. Changes in the values of natural frequencies and also the inconsistency of the modes shape، based on Modal Assurance Criterion (MAC) and the angle between modes of shape confirm the damage of the structure. Precast panel health monitoring results show that based on the experimental results, the damage location using the coif5 function with scale parameter 8 has been successfully identified and shows a higher perturbation of the coefficients at the damage locations than the other functions. Thus, the relative maximum and minimum jumps in the wavelet coefficients occurred at the location of the damage and considering the maximum or minimum wavelet coefficients generated at the damage location as the center of damage, the damage center can be identified with an error of less than 8%. The disturbance of the wavelet coefficients of each of the damage locations are independent of the other damage locations with different intensities. Also, the effect of higher modes is more pronounced in the damage intensity index as in the torsional modes of the structure, the maximum wavelet coefficients are greater and the intensity of the damage is increased. In addition, in the process of reducing the structural stiffness, the first and second stories play a more important role, and around the openings are the critical points of the structure.

کلیدواژه‌ها English

3D Panel
Wavelet Analysis
Structural health monitoring
Damage detection
Signal processing
[1] Kabir, M.Z., Rezaifar, O. and Rahbar, M.R. (2004). Non-Linear Dynamic Behavior Of Combined System On Rc Frame Precast 3D Wall Panels With Irregularities In Vertical Stiffness. 13th World Conference On Earthquake Engineering,Vancouver, B.C., Canada.
[2] Ruifen, L., chris, P. (2013). Shear strength of GFRP reinforced precast lightweight concrete panels. Construction and Building Materials. 48, 51–58.
[3] Arisoy, B. and Wu, H.C. (2008). performance of a fiberreinforced lightweight concrete panel. Institution of civil engineering. 157–162.
[4] Arisoy, B. and Wu, H.C. (2008). Material characteristics of high performance lightweight concrete with PVA. Journal of Construction and Building Materials. 22, 635–645.
[5] Arisoy, B. (2002). Development and Fracture Evaluation of High Performance Fiber Reinforced Lightweight Concrete. PhD thesis, Department of Civil & Environmental Engineering, Wayne State University, Detroit, MI, USA.
[6] Rezaifar, O., Kabir, M.Z., Taribakhsh, M., and Tehranian, A. (2008). Dynamic Behavior of 3D-Panel single-story system using shaking table testing. Journal of Engineering Structures. 30, 318-337.
[7] Gara, F., Ragni, L., Roia, D. and Dezi, L. (2012). Experimental Tests and Numerical Modelling of Wall Sandwich Panels. Engineering Structures. 37, 193-204.
[8] Shigang, A., Yiqi, M., Yongmao, P., Daining, F. and Liqun, T. (2013). Effect of Stitching Angle on Mechanical Properties of Stitched Sandwich Panels. Materials & Design, 50, 817-824.
[9] Carbonari, G., Cavalaro, S.H.P., Cansario, M.M., Aguado A. (2012). Flexural Behaviour of Light-Weight Sandwich Panels Composed by Concrete and EPS. Construction and Building Materials. 35, 792-799.
[10] Pavese, A. and Bournas, D. (2011). Experimental assessment of the seismic performance of a prefabricated concrete structural wall system. Engineering Structures. 33, 2049-2062.
[11] Elkashef, M. and Mooty, M.A. (2014). Investigating the use of autoclaved aerated concreteas an infill in reinforced concrete sandwich panels. Materials and Structures. 48, 298-312.
[12] Kang, J. (2015). Composite and Non-composite Behaviors of Foam-insulated Concrete Sandwich Panels. Composites. 68, 153-161.
[13] Kabir, M.Z. and Shadan, P. (2012). Seismic Performance of 3D Panel Wall on Piloti RC Frame Using Shaking Table Equipment. Proceedings of the 8th International Conference on Structural Dynamics.
[14] Mashal, M. (2012). Quantification of seismic performance factors for buildings incorporating three-dimensional construction system. in Proceeding NZSEE, New Zealand.
[15] FEMA. P-695. (2010). Quantification of Building Seismic Performance Factors. ed. prepared by Applied Technology Council for the Federal Emergency Management Agency: Washington D.C.
[16] Zhong, S. and Oyadiji, S.O. (2011). Detection of cracks in simply-supported beams by continuous wavelet transform of reconstructed modal data. Computers and structures Journal. 1 (89), 127-148.
[17] Bayissa, W., Haritos, N., and Thelandersson, S. (2008). Vibration-based Structural Damage Identification Using Wavelet Transform. Mechanical Systems and Signal Processing. 22, 1194-1215.
[18] Rezaifar, O., Doost Mohammadi, M.R. (2016). Damage Detection of Axially Loaded Beam: A Frequency-Based Method. Civil Engineering Infrastructures Journal. 49(1), 165-172.
[19] Rucka, M. (2011). Damage Detection in Beams Using Wavelet Transform on Higher Vibration Modes. Journal of Theoretical and Applied Mechanics. 49, 399-417.
[20] Solís, M., Algaba, M., and Galvín, P. (2013). Continuous wavelet analysis of mode shapes differences for damage detection. Mechanical Systems and Signal Processing. 40, 645-666.
[21] Ghodrati Amiri, G., Jalalinia, M., Hosseinzadeh, A.Z., and Nasrollahi, A. (2015). Multiple Crack Identification in Euler Beams by Means of B-spline Wavelet. Archive of Applied Mechanics. 85, 503-515.
[22] Patel, S., Chourasia, A., Panigrahi, S., Parashar, J., Parvez, N., and Kumar, M. (2016). Damage Identification of RC Structures Using Wavelet Transformation. Procedia Engineering. 144, 336-342.
[23] Bagheri, G., Ghodrati Amiri, G., Khorasani, M. (2010). Structural Damage Identification of Plates Based on Modal Data Using 2d Discrete Wavelet Transform. Journal of Structural Engineering and Mechanics. 40, 13–28.
[24] Bagheri, G., Ghodrati Amiri, G., Seyed Razzaghi, S.A. (2009). Vibration-Based Damage Identification of Plates Structure via Curvelet Transform. Journal of Sound and Vibration. 327, 593–603.
[25] Ghodrati Amiri, G., Bagheri, G., Seyed Razzaghi, S.A., Asadi, A. (2009). Structural Damage Detection in Plates Using Wavelet Transform. Proceedings of the Fifth International Structural Engineering and Construction Conference (ISEC-5), Las Vegas, USA, Sept. 22-25.
[26] Beskhyroum, S,. Oshima, T,. Mikami, S. (2010). Wavelet based technique for structural damage detection. Structural control and health monitoring. 17, 473-494.
[27] Katunin, A. (2015). Stone impact damage identification in composite plates using modal data and quincunx wavelet analysis. Archives of Civil and Mechanical Engineering. 15, 251-261.
[28] Yang, C., Oyadiji, S. O. (2017). Delamination detection in composite laminate plates using 2d wavelet analysis of modal frequency surface. Journal of Computers and Structures. 179, 109-126.
[29] Rezayfar, O., Younesi, A., Gholhaki, M., and Esfandiari, A. (2018). Debbonding damage detection in concrete filled tube columns by experimental modal data. Journal of Structural and Construction Engineering (JSCE).
[30] Younesi, A., Rezayfar, O., Gholhaki, M., and Esfandiari, A. (2019). Structural health monitoring of a concrete-filled tube column. Magazine of Civil Engineering. 85(1), 136-145.
[31] Wang, S., Li, J., Luo, H., Zhu, H. (2019). Damage identification in underground tunnel structures with wavelet based residual force vector. Journal of Engineering Structures. 178, 506-520.
[32] Kabir, M.Z., Rezaifar, O. (2019). Shaking table examination on dynamic characteristics of a scaled down 4-story building constructed with 3D-panel system. Journal of Structures. 20, 411-424.
[33] Pastor, M., Binda, M., and Harcarik, T. (2012). Modal Assurance Criterion. Journal of Procedia Engineering. 48, 543-548.