بهینه‌سازی اندازه و توپولوژی خرپاها با استفاده از روش ده‌پا اصلاح شده

نوع مقاله : پژوهشی اصیل (کامل)

نویسندگان
1 عضو هیات علمی
2 دانشگاه ولی عصر(عج) رفسنجان
چکیده
بهینه­سازی را می توان فرآیندی برای یافتن شرایطی دانست که مقدار حداکثر و حداقل یک تابع را ایجاد می­کند.الگوریتم­های فراابتکاری با یکایدهازیکرویداددرطبیعتبرایایجادالگوریتمبهینه­سازی به کار گرفته شده­اند. دراینمقالهالگوریتمبهینه­سازیفراابتکاریده­پا به کمک ماشین­های یاخته­ای اصلاح و برای بهینه­سازی اندازه و توپولوژی خرپاها استفاده شده است.در این روش اصلاح شده، ماشین یاخته­ای وهمسایگی مور تعریف می­شود و بهترین جواب انتخاب و از آن برای ایجاد جمعیت جدید استفاده می­شود. در آخر بهترین جواب جایگزین بدترین فرد در ماشین یاخته­ای شده و به این صورت ماشین یاخته­ای به روزرسانی می­شود.در این مقاله جابه­جایی گره­ها و نیروهای داخلی سازه­ی خرپا به عنوان قیدهای بهینه­سازی در نظر گرفته شده­اند. مقایسه نتایج عددی که از روش اصلاح شده به دست می­آید با بقیه روش­های فراابتکاری نشان می­دهد که الگوریتم اصلاح شده­ی پیشنهادی قادر به یافتن پاسخ بهتر با استفاده از تلاش­های محاسباتی کمتر است.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Size and topology optimization of truss structures using an enhanced cuttlefish method

نویسندگان English

Mostafa Mashayekhi 1
Fahime Mehdizade 2
1 Faculty member
2 Student
چکیده English

A suitable design is one design can achieve to its aims with minimum cost and needing to less computing time. In civil engineering due to survey of large scale structures and large number of design variables, it is so hard achieving to such design only based on experience and therefore optimization methods came to help designer as useful tools in order to find an economic and efficient design. Structural optimization can be defined as a process of dealing with the optimal design of various structures. Ausual objective function is the weight of the structure. In general, there are three main categories in structural optimization applications, namely, size, topology and geometry (shape) optimization.Cellular automata (CA) is a computationally efficient and robust tool to simply implement complex computations. As CA is simple to be implemented and can deal with complex problems without extensive mathematical computations, it is widely used in various fields of science and engineering.In recent years, various meta-heuristic inspired optimization methods have been developed.Almost all of metaheuristic algorithms come up with an idea of employing a particular process or event in nature as a source of inspiration for the development of optimization algorithm. The Cuttlefish algorithm is inspired based on the color changing behavior of cuttlefish to find the optimal solution. The patterns and colors seen in cuttlefish are produced by reflected light from different layers of cells including (chromatophores, leucophores and iridophores) stacked together, and it is the combination of certain cells at once that allows cuttlefish to possess such a large array of patterns and colors.In this article, cuttlefish algorithm (CFA)combined with cellular automata (CA) and were used for optimization truss structures.First, cellular automata and the Moor neighboring cells are defined and to the number ofsquares of the cell number ofcellular automata lattice( )is selected from the best population. Then, the variables vector and their objective function of selected population are placed in each cell of the cellular automata.In a Moor neighboring, nine cells are compared to each other and the best answer ( )is selected and that is used to create new population.Finally, the best person in thenew population will be selected and itreplacedwith the worst person in the cellular automata, and thus the cellular automatais updated. Some benchmark numerical examples were solved using the CFA and CA-CFA algorithms, and the results of the numerical examples showed that the enhanced algorithm performancesbetter in size and topology optimization of truss structures than cuttlefish algorithm and other methods introduced in the literature. Finally, it can be concluded that the convergence speed of the improved algorithm compared with previous approaches is higher and its ability to achieve the desired values is better too.

کلیدواژه‌ها English

metaheuristics algorithms
Topology optimization
cuttlefish algorithm
truss structures
cellular automata
[1] Dorn W.S.,Gomory, R.E. & Greenberg, H.J. 1964Automatic design of optimalstructures.Journal de Mécanique, 3(6), 25-52.
[2] Ringertz U.T. 1985On topology optimization of trusses.Engineering optimization, 9(3),209-218.
[3] Faramarzi A. & Afshar M.H. 2012 Application of cellular automata to size and topologyoptimization of truss structures.Scientia Iranica A, 19 (3), 373-380.
[4] Mashayekhi M.,Salajegheh E., Salajegheh J.&FadaeeM.J. 2012Reliability-based topology optimization of double layer gridsusing a two-stage optimization method.Structural and Multidisciplinary Optimization, 45, 815-833.
[5] Dehghani M., Mashayekhi M.&Salajegheh E.2016Topology optimization of double- and triple-layergrids using a hybrid methodology.Engineering Optimization, 48(8), 1333-1349.
[6] Mashayekhi M.,Salajegheh E. &DehghaniM. 2016Topology optimization of double and triple layer grid structures using amodified gravitational harmony search algorithm with efficient membergrouping strategy.Computers and Structures,172, 40-58.
[7] Mashayekhi M., Salajegheh E. & Bijari R. 2018 Topology optimization of double layer grid space structures using an enhanced harmony search algorithm. Modares Civil Engineering Journal, 18(1),(In Persian).[8] Rahami H., Kaveh A. & Gholipour Y. 2008 Sizing, geometry and topology optimization of trusses via force method and genetic algorithm. Engineering structures, 30(9), 2360-2369.[9] Kaveh A. & Talatahari S. 2009 A particle swarm ant colony optimization for truss structures with discrete variables.Journal of Constructional Steel Research, 65, 1558-1568.[10] Hasancebi O. &Kazemzadeh S. 2015 Adaptive dimensional search: A new metaheuristic algorithm for discrete truss sizing optimization.Computers and Structures, 154, 1-16 [11] Lee K.S. & Geem Z.W. 2004 A new structural optimization method based on theharmony search algorithm. Computers and Structures, 82, 781-98.[12] Eesa A.S., Orman Z. & Brifcani A.M.A. 2014A novel feature-selection approach based on the cuttlefish optimization algorithm for intrusion detection systems.Expert Systems with Applications, 42(5), 2670.
[13] Schiff J.L. 2007 Cellular automata: a discrete view of the world. Wiley & Sons.
[14] Neumann J.V. 1966 The Theory of Self-Reproducing Automata.A.W. Burks, Editor, Universityof Illinois Press, Urbana and London.
[15] MargolusN. & Toffoli T. 1987 Cellular Automata Machines. A New Environment for Modeling, MIT Press, Cambridge, Mass.
[16] Wolfram S. 2002 A New Kind of Science.Wolfram Media Inc Press, Champaign, Illinois, USA.
[17] Droz M. & Pekalski A. 2002 Dynamics of populations in extended systems.Lecture Notes inComputer Science,2493, 190-201.
[18] Kita E. & Toyoda T. 2000 Structural design using cellular automata.Structural and Multidisciplinary Optimization, 19, 64-73.
[19] Tatting B. & Gürdal Z. 2000 Cellular automata for design of two-dimensional continuum structures.8th ProceedingsOf AIAA/NASA/ISSMO.Symposiumon Multidisciplinary Analysis and Optimization, California, USA, 1-10.
[20] Biondini F., Bontempi F., Frangopol D.M. & Malerba P.G. 2004 Cellularautomata approach to durability analysis of concrete structures in aggressive environments. Journal of Structural Engineering ASCE, 130(11),1724-1737.
[21] Cortes H., Tovar A., Munoz J.D., Patel N.M. & Renaud J.E. 2005Topology optimization of truss structures using cellular automata with accelerated simultaneous analysis and design.6th InternationalCongresses of Structural and Multidisciplinary Optimization, Rio de Janeiro, Brazil, 1-10.
[22] Bochenek B. & Zielińska K.T. 2012Novel local rules of cellular automata applied to topology and size optimization.Engineering Optimization, 44(1), 23-35.
[23] Gürdal Z. & Zakhama R. 2010 Cellular automata for simultaneous analysis and optimal structural topology design.Understanding Complex Systems, 72, 333-353.
[24] Gholizadeh S. 2013 Layout optimization of truss structures by hybridizing cellular automata and particle swarm optimization.Computers and Structures, 125, 86-99
[25] Li L.J., Huang Z.B. & Liu F. 2009 A heuristic particle swarm optimization method for truss structures with discrete variables.Computers and Structures, 87, 435-443.
[26] Sönmez M. 2011 Discrete optimum design of truss structures using artificial bee
colony algorithm. Structural and Multidisciplinary Optimization, 43, 85-97.
[27] Camp C.V., Pezeshk S.&Cao G. 1998 Optimized design of two-dimensional structures using a genetic algorithm. Journal of Structural Engineering ASCE, 124(5), 551-9.
[28] Zhang Y.N., Liu J.P., Liu B., Zhu C.Y.&Li Y. 2003Application of improved hybrid genetic algorithm to optimize.Journal South China University of Technology,33(3), 69-72.
[29] Cheng M.Y. & Prayogo D. 2014 Symbiotic Organisms Search: A new metaheuristic optimizationalgorithm. Computers and Structures, 139, 98-112.
[30] Kaveh A. & Mahdavi V.R. 2014Colliding Bodies Optimization method for optimum discrete design of truss structures.Computers and Structures, 139, 43-53.
[31] Hasançebi O., Çarbas S., Dogan E., Erdal F. & Saka M.P. 2009 Performance evaluation of metaheuristic search techniques in the optimum design of real size pin jointed. structures,Computers and Structures, 87(5-6), 284-302.
[32] Deb K.&Gulati S. 2001 Design of truss-structures for minimum weight using genetic algorithms.Finite Elements Analysis and Design, 37(5), 447-465.
[33] Luh G.C.& Lin C.Y. 2008 Optimal design of truss structures using ant algorithm. Structural and Multidisciplinary Optimization, 36(4), 365-379.