تأثیر تغییر ترتیب لایه‌‌های رسی و ماسه‌‌ای در دانسیته های مختلف بر شاخص رمبندگی خاک

نوع مقاله : پژوهشی اصیل (کامل)

نویسندگان
1 دانشگاه بوعلی سینا، دانشکده مهندسی
2 موسسه آموزش عالی عمران و توسعه
چکیده
خاک‌‌هایی که در اثر افزایش رطوبت، کاهش حجم زیادی داشته و باعث نشست‌‌های ناگهانی در سطح زمین می‌‌شوند خاک‌‌های رمبنده نامیده می‌‌شوند. وجود خاک‎های رمبنده به خصوص در مناطق گرم و خشک سبب ایجاد فرونشست و فروچاله شده‌است. وقوع این‌‌گونه فروچاله‌‌ها در بخش‌‌هایی از ایران و کشورهای دیگر از جمله مشکلات ژئوتکنیکی است. در مجموع در زمینه تأثیر تغییر لایه­های ماسه و رس بر رفتار رمبندگی خاک تحقیقات محدودی انجام شده‌است. هدف از این تحقیق بررسی تأثیر تغییر ترتیب لایه‌‌های رسی و ماسه‌‌ای بر تغییرات شاخص رمبندگی است. برای دستیابی به هدف فوق، خاک ماسه‌‌ای نواحی شمالی استان همدان و رس کائولینیت برای ساخت نمونه‌‌ها در سه سیستم تک لایه، دو لایه و سه لایه در قالب‌‌های ساخته شده به ارتفاع و قطر 5 سانتی‌‌متر در آزمایش رمبندگی مورد استفاده واقع شده‌‌‌است. نمونه­ ها با وزن مخصوص‌‌های 3/1، 5/1 و 7/1 گرم بر سانتی‌‌مترمکعب در قالب دستگاه تحکیم، به صورت لایه به لایه متراکم شده و شاخص رمبندگی آنها تعیین شده‌است. نتایج نشان می­دهد که مکانیزم رمبندگی به مقدار قابل توجهی تابعی از ترتیب قرارگیری لایه‌‌های رسی و ماسه­ای است. در سیستم‌‌های دو یا سه لایه‌‌ای حاوی لایه‌‌ی رسی شاخص رمبندگی در محدوده‌‌ی 9/4% تا 7/8% تغییر کرده است. به طوری‌که در سیستم دو لایه‌‌ای (لایه‌‌ی تحتانی ماسه و لایه‌‌ی فوقانی رس)، طبقه‌‌بندی خاک از شاخص رمبندگی متوسط در سیستم تک لایه (لایه‌‌ی ماسه‌‌ای) به شاخص رمبندگی نسبتاً شدید تغییر کرده است. با افزایش وزن مخصوص خشک خاک از تأثیر چینش لایه‌‌ها در مقدار شاخص رمبندگی کاسته می‌‌شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Impact of Change in the Layers Order of Clay and Sand at Different Densities on the Collapse Index of Soil

نویسندگان English

Vahid Reza Ouhadi 1
Amir Hossien Mortazavi 2
1 Bu-Ali Sina University, Faculty of Eng.
2 University College of Omran_Tosseeh
چکیده English

Soils, which show a large amount of volume reduction and cause a series of sudden settlements on the surface of the earth, due to the increase of moisture, are referred to as collapsible soils. In many different countries, the immediate settlements of these soils, especially in warm and arid areas, have caused the formation of subsidence and sinkhole. These soils always create inappropriate conditions for the construction of structures such as buildings, road projects, foundations, water channels and other civil engineering projects. The occurrence of such sinkholes in parts of Iran and other parts of the world is one of the geotechnical problems of the above problematic soils. Several sink holes have formed in the northern sector of Hamedan. The soil types in this area include sandy and clayey soils which have low dry density.

Generally, collapsible behaviour of soils can be evaluated by the use of odometer test. According to the ASTM standard (D5333-03), the collapse index (Ie) is used to determine the magnitude of collapsible possibility during saturation at 200 kPa in a simple odometer device. The purpose of this study was to investigate the effect of changing the order of clay and sand layers on the collapsible behavior mechanism of collapsible soils and on the changes in the collapse index.

To achieve the above mentioned objective, the sandy soil was used from the northern areas of Hamadan and kaolinite clay (Super Zenouz of Tabriz) used to make the samples in three single-layer, two-layer and three-layer systems in specific molds made to a height and diameter of 5 cm in the odometer apparatus. Accordingly, in the present laboratory study on these two types of soil, considering the different arrangements of clay and sandy layers, at each stage of the specimen preparation, specimens were prepared in three different series with a dry unit weight of 1.3, 1.5 and 1.7 g per cubic centimeter in a odometer metal molds.

By carrying out a series of odometer experiments, it was found that the sandy soils of the study area alone did not have a high percentage of the collapse index. However, with the presence of clay layers in such soils, the collapse index increases, so that collapse index at a unit weight of 1.3 g per cubic centimeter in the sample made in a single-layer system (fine-grained sand sample) reached from 3.8% to 8.7% in the sample made in the presence of a clay in the two-layer system, (the lower layer of the fine-grained sand and the upper layer of clay). Based on the results obtained from this study, the mechanism of collapse can significantly being influenced by the order of layering in that with increasing dry unit weight, the effect of the ordering of the layers on the value of the collapse index decreases. The results of this paper shows that in specimens made with a density of 1.7 g per cubic centimeter, the collapse index of all samples are almost similar values. In other words, the collapsible behaviour of soils is a function of soil dry density.

کلیدواژه‌ها English

Layered Soils
Collapse Index
Layered Soil
Dry Unit Weight
Clay
sand
5- مراجع
[1] Feda, J., 1988. Collapse of loess upon wetting. Engineering geology, 25(2-4), 263-269.
[2] Houston, S. L., Houston, W. N., & Spadola, D. J., 1988. Prediction of field collapse of soils due to wetting. Journal of Geotechnical Engineering, 114(1), 40-58.
[3] Hormdee, D., 2008. Investigation on collapse potential of loess soil. In The Eighteenth International Offshore and Polar Engineering Conference. International Society of Offshore and Polar Engineers.
[4] Lommler, J. C., & Bandini, P., 2015. Characterization of collapsible soils. In IFCEE, 1834-1841.
[5] Lawton, E. C., Fragaszy, R. J., & Hardcastle, J. H. 1989. Collapse of compacted clayey sand. Journal of Geotechnical Engineering, 115(9), 1252-1267.
[6] Tadepalli, R., Rahardjo, H., & Fredlund, D. G., 1992. Measurements of matric suction and volume changes during inundation of collapsible soil. Geotechnical Testing Journal, 15(2), 115-122.
[7] Rollins, K. M., Rollins, R. L., Smith, T. D., & Beckwith, G. H., 1994. Identification and characterization of collapsible gravels. Journal of geotechnical engineering, 120(3), 528-542.
[8] Santagata, M. C., El Howayek, A., Huang, P. T., & Bisnett, R., 2011. Identification and behavior of collapsible soils. Joint Transportation Research Program Technical Rep. Series Rep. SPR-3109, Indiana Dept. of Transportation and Purdue Univ., West Lafayette, IN.
[9] Clemence, S. P., & Finbarr, A. O., 1981. Design considerations for collapsible soils. Journal of Geotechnical and Geoenvironmental Engineering, 107 (ASCE 16106).
[10] Houston, S. L., Houston, W. N., Zapata, C. E., & Lawrence, C., 2001. Geotechnical engineering practice for collapsible soils. In Unsaturated soil concepts and their application in geotechnical practice, 333-355. Springer, Dordrecht.
[11] Cerato, A. B., Miller, G. A., & Hajjat, J. A., 2009. Influence of clod-size and structure on wetting-induced volume change of compacted soil. Journal of geotechnical and geoenvironmental engineering, 135(11), 1620-1628.
[12] Phien-Wej, N., Pientong, T., & Balasubramaniam, A. S., 1992. Collapse and strength characteristics of loess in Thailand. Engineering Geology, 32(1-2), 59-72.
[13] Nouaouria, M. S., Guenfoud, M., & Lafifi, B., 2008. Engineering properties of loess in Algeria. Engineering Geology, 99(1-2), 85-90.
[14] Derbyshire, E., 2012. Genesis and properties of collapsible soils. Journal of Springer Science & Business Media, Vol. 468.
[15] Ryashchenko, T. G., Akulova, V. V., & Erbaeva, M. A., 2008. Loessial soils of priangaria, transbaikalia, Mongolia, and northwestern China. Quaternary International, 179(1), 90-95.
[16] Annual Book of ASTM Standards Designation: D5333-03, 2003. Standard test methods for measurement of collapse potential of soils, Vol. 04.09.
[17] Ouhadi, V. R., & Bakhshalipour, H., 2010. Impact of nanoclays on the behavior properties of collapsible soils. In 9th International Congress on Advances in Civil Engineering. Karadeniz Technical University, Trabzon, Turkey.
[18] Song, L. H., 1986. Pumping subsidence of ground surface in Karst areas. Academia Sinica, Beijing, 15pp.
[19] Lawton, E. C., Fragaszy, R. J., & Hetherington, M. D., 1992. Review of wetting-induced collapse in compacted soil. Journal of geotechnical engineering, 118(9), 1376-1394.
[20] Abbeche, K., Hammoud, F., & Ayadat, T., 2007. Influence of relative density and clay fraction on soils collapse. In Experimental Unsaturated Soil Mechanics (pp. 3-9). Springer, Berlin, Heidelberg.
[21] Basma, A. A., & Tuncer, E. R., 1992. Evaluation and control of collapsible soils. Journal of Geotechnical Engineering, 118(10), 1491-1504.
[22] Alwail, T. A., Ho, C. L., & Fragaszy, R. J., 1994. Collapse mechanism of compacted clayey and silty sands. In Vertical and Horizontal Deformations of Foundations and Embankments (pp. 1435-1446). ASCE.
[23] Ouhadi, V.R., & Goodarzi, A.R., 2005. Impact of solubility of carbonate or sulfate salts and collapsible potential on the formation of sinkholes. Engineering Journal of Tabriz University, Vol. 34, No.3, pp. 1-10.
[24] Sheeler, J. B., 1968. Summarization and comparison of engineering properties of loess in the United States. Highway Research Record, 212, 1-9.
[25] Pells, P., Robertson, A., Jennings, J. E., & Knight, K., 1975. A guide to construction on or with materials exhibiting additional settlement due to Collapse of grain structure.
[26] ASTM, 2017. Annual book of ASTM Standard, Vol. 04.09, Soil and Rock (II);
Geosynthetics, Philadelphia, USA, P.A., pp. 515.
[27] Benchouk, A., Abou-Bekr, N., & Taibi, S., 2013. Potential collapse for a clay soil. International Journal of Emerging Technology and Advanced Engineering, 3, 43-47.
[28] Ouhadi, V. R., Zareie, N., and Bava Pouri, H., 2013. Geotechnical evaluation of impact of Illite mineral on the behaviour of collapsible soils. The Seventh Congress on Civil Engineering, Zahedan, Sistan and Baloochestan University.
[29] Ali, N. A., 2015. Performance of partially replaced collapsible soil, Field study, Alexandria Engineering Journal, Elsevier, Vol. 54, pp. 527-532.
[30] Houston, S.L., Mahmoud, H., and Houston, W.N., 1995. Down-hole Collapse Test System. Journal of Geotech. Engr., ASCE, Vol. 121, No. 4.
[31] Thorel, L., Ferber, V., Caicedo, B., and Khokhar, I.M., 2011. Physical modeling of wetting-induced collapse in embankment base. Geotechnique, Vol. 61, No. 5, pp.409-420.
[32] Cui, Z. D., and Jia, Y.J., 2018. Physical model test of layered soil subsidence considering dual effects of building load and groundwater withdrawl. Arabian Journal of Science and Eng., Vol. 43, pp. 1721-1734.
[33] Sartkaew, S, Khamrat, S., and Fuenkajorn, K., 2019. Physical model simulation of surface subsidence under sub-critical condition. Vol. 19 (5), pp. 234–246.
[34] Yong, R.N., Mohamed, A.M.O., Warkentin, B.P., 1992. Principles of Contaminant Transport in Soils. Elsevier, Holland.
[35] Yong, R.N., Nakano, M., and Pusch, R., 2013. Environmental soil properties and behaviour. CRC, Taylor and Francis. P. 435.