مدلسازی اجزاء محدود آزمایش بیرون کشش نیل مارپیچ

نوع مقاله : پژوهشی اصیل (کامل)

نویسندگان
1 استادیار دانشکده مهندسی عمران و محیط زیست-گروه ژئوتکنیک-دانشگاه تربیت مدرس
2 دانشجوی کارشناسی ارشد مهندسی ژئوتکنیک-دانشکده مهندسی عمران و محیط زیست-دانشگاه تربیت مدرس
چکیده
در چند دهه اخیر استفاده از یک روش کارآمد و اقتصادی در تامین پایداری خاک، به عنوان یک چالش مهم برای مهندسین و محققین مطرح بوده است. نیلینگ (مسلح سازی خاک در محل) با توجه به سرعت اجرا، تکنیک مناسبی در تامین پایداری است. عموما نیلینگ با نیل های ساده و دارای تزریق شناخته می‌شود، اما نیل دارای صفحات مارپیچ یا "نیل مارپیچ1" نیز با توجه به سرعت زیاد اجرا و عدم نیاز به تزریق مورد توجه است. با توجه به بررسی های محدود صورت گرفته در زمینه نیل مارپیچ، هدف این مطالعه بررسی مقاومت بیرون کشیدگی2 نیل مارپیچ (به عنوان مهم ترین عامل در طراحی سیستم نیلینگ) با یک مدلسازی اجزاء محدود سه بعدی توسط نرم افزار آباکوس است. بررسی اثر سربار3، فاصله و تعداد صفحات، اهداف این مطالعه هستند. نتایج، اثر سربار بر مقاومت بیرون کشش را تایید می‌کنند. همچنین سطوح گسیختگی در فواصل دورتری نسبت به سطح نیل اتفاق می‌افتد و فاصله سه برابر قطر را می توان فاصله بهینه صفحات در نظر گرفت. استفاده از نیل با فاصله صفحات کم‌تر موجب افزایش مقاومت نشده است. همچنین استفاده از صفحات بیش‌تر با فاصله کم‌تر افزایش مقاومت را نشان نمی‌دهد. مقایسه نتایج مدلسازی و تست های آزمایشگاهی نشان دهنده صحت مدلسازی آزمایش بیرون کشش4 است و این مدلسازی می‌تواند گواهی بر عملکرد نیل مارپیچ در شیب های خاکی باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Finite element modelling of pull-out test for helical soil-nail

نویسندگان English

mohammad noroz olyaei 1
sina maaf 2
1 Assistant Professor (Geotechnical Engineering), Department of Civil Engineering, Tarbiat Modares University
2 M.Sc. Student (Geotechnical Engineering), Department of Civil Engineering, Tarbiat Modares University
چکیده English

In recent decades, the use of an efficient and cost-effective method to provide soil stability has been a major challenge for civil engineers. With increasing urban population, the need for underground spaces increases and deep excavation is an inevitable affair in civil projects. Deep tunnels and large buildings require deep excavations, which must use some techniques for stabilize it. Soil-nailing (reinforcing soil at the site) due to the fast build, is a good way to provide stability. It can also be described as a top-down construction technique for the improvement of behavioural properties of in-situ soil mass. Soil-nailed system is formed by inserting relatively slender reinforcing bars into the slope. Depending upon the project cost, site accessibility, availability of working space, and the soil and groundwater conditions, soil-nails can be inserted into the ground. Soil-nail is generally known as conventional and injectable nails but nails with screw plates or "helical soil-nails" are also important due to the faster build and no need for groutings. Helical soil-nails are new alternative to the conventional soil nails or tie-backs for stabilization of slopes, excavations and embankments due to ease of installation, minimal site disturbance and immediate loading capability. Helical soil-nails are installed by application of torque without a drill hole and derive its capacity from one or more helical plates attached to the nail. The shear strength-displacement behavior at the interface is an important parameter in design of various geotechnical engineering projects, for example, soil-nails, retaining walls, shallow foundations, pile foundations, etc. In soil-nailing, behavioure of interface between the soil and nail estimated by pull-out test. The behaviour of interface is governed by numerous factors, such as stress conditions, soil properties, method of installation and soil-nail interface boundary conditions. The pull-out resistance is measured as the most important factor in the design of the nailing system, by pull-out test. This study, because of limited learning of helical soil nail, aimed to investigate the pull-out resistance by a 3D finite element modeling with abaqus software and compare its results with laboratory data. A review of the literature for the screw soil-nails as well as a comparison of its performance with conventional soil nails is discussed and numerical results of a series of pull-out tests on a screw soil-nail are presented. And review of the overburden pressure and plate number and plate distance effect is followed. The results show that in helical soil-nail pull-out a high overburden pressure effect can be seen. A semi-linear relationship between peak pull-out force and overburden pressure is observed for different methods of calculating the helical soil-nail capacity that it is indicating that it satisfies the Mohr-Coulomb failure criteria. Rupture surfaces occur at distances farther than the nail surface, and three times the diameter can be considered the optimal distance of the plates. Using fewer plate distance does not increase resistance, also using more plate with fewer distance does not increase resistance. Comparison of modeling and laboratory results indicates that modeling of pull-out test can model the behavior of helical soil-nail and verify its performance in a field soil slope.

کلیدواژه‌ها English

Finite element modelling
Soil-nailing
Helical soil-nail
Pull-out test
[1] Wei W.B. & Cheng Y.M. 2010 Soil nailed slope by strength reduction and limit equilibrium methods. Computers and Geotechnics , 37 , 602–618 .
[2] Cartier G. & Gigan J.P. 1983 Experiments and observations on soil nailing structures. In: Paper presented at the 8th European conf. on soil mechanics and foundation engineering, Helsinki, Finland; Vol.2 , 473-476.
[3] Heymann G. , Rohde A.W. , Schwartz K. & Fiedlaender E. 1992 Soil nail pullout resistance in residual soils. In: Paper presented at the proceedings, international sympposium on earth reinforcement practice, Fukuoka, Japan, 487-492 .
[4] Jewell R.A. 1990 Review of theoretical models for soil nailing. In: Paper presented at the proceedings, international reinforced soil conference, Glasgow, U.K. , 265–75.
[5] Milligan G.W.E., Tei K., 1998 The pull-out resistance of model soil nails. Soils Found , 38(2) , 179–90.
[6] Pradhan B. , Tham L. , Yue Z. , Junaideen S. & Lee C. 2006 Soil–nail pullout interaction in loose fill materials. Int J Geomech, 6(4), 238–47.
[7] Schlosser F. 1982 Behavior and design of soil nailing. In: Paper presented at the proceedings, international symposium on recent development in ground improvement technique, Bangkok, Thailand.
[8] Sharm M., Samanta M. & Sarkar S. 2017 A laboratory study on pullout capacity of helical soil nail in cohesionless soil. Canadian Geotechnical Journal , 54(10) , 1482-1495.
[9] Tokhi H. , Ren G. & Li J. 2016 Laboratory study of a new screw nail and its interaction in sand. Computers and Geotechnics , 78 , 144–154 .
[10] Kovári K. 2003 History of the sprayed concrete lining method, part II: milestones up to the 1960s. Tunn Undergr Space Technol, 18(1), 71–83.
[11] Yeung, A.T., Cheng, Y.M., Lau, C.K., Mak, L.M., Yu, R.S.M., Choi, Y.K., and Kim, J.H. 2005. An innovative Korean system of pressure-grouted soil nailing as a slope stabilization measure. In Proceedings of the HKIE Geotechnical Division 25th Annual Seminar, Hong Kong, 4 May 2005. Geotechnical Division, Hong Kong Institution of Engineers, Hong Kong. pp. 43–49.
[12] Junaideen S.M., Tham L.G., Law K.T., Lee C.F. & Yue Z.Q. 2004 Laboratory study of soil–nail interaction in loose, completely decomposed granite. Can Geotech J, 41 (2), 274–86.
[13] Su L. , Chan T. , Yin J. , Shiu Y. & Chiu S. 2008 Influence of overburden pressure on soil–nail pullout resistance in a compacted fill. J Geotech Geoenviron Eng ,134 (9),1339–47.
[14] Su, L.J., Chan, T.C.F., Shiu, Y.K., Cheung, T., and Yin, J.H. 2007. Influence of degree of saturation on soil nail pull-out resistance in compacted completely decomposed granite fill. Canadian Geotechnical Journal, 44(11): 1314–1328.
[15] Hong C.Y., Yin J.H. & Pei H.F. 2013 Comparative study on pullout behaviour of pressure grouted soil nails from field and laboratory tests. J Central South Univ , 20:22, 85–92.
[16] Yin J. , Zhou W. 2009 Influence of grouting pressure and overburden stress on the interface resistance of a soil nail. J Geotech Geoenviron Eng, 135 (9) , 1198–208 .
[17] Bobbitt D.E. 1996 Chance soil screw retention wall system report. Retrieved from Centralia, Missouri.
[18] Deardorff D. , Moeller M. & Walt E. 2010 Results of an instrumented helical soil nail wall earth retention conference 3. American Society of Civil Engineers, 262–9.
[19] Carlos A., Lazarte Ph.D., P.E., Victor Elias P.E., David Espinoza R., Ph.D., P.E., Paul J. ,Sabatini, Ph.D., P.E. 2003 GEOTECHNICAL ENGINEERING CIRCULAR NO. 7, Soil Nail Walls. Report No.FHWA0-IF-03-017 (March 2003).
[20] Acceptance criteria for helical foundation system and devices 2003 , one of the evaluation reports from ICC evaluation service company (ICC-ES-A350).
[21] Hamednasimi H., 2018 Thesis: Experimental study of overburden pressure, geometry, installation method, density and moisture content of soil effects on screw nail pullout resistance. Department of Geotechnical Engineering Faculty of Civil & Environmental Engineering Tarbiat Modares University. (In Persian)
[22] Centralia H.C. 2014 Enclopedia of anchoring, Anchors and anchors tools. Hubbell / Chance — Cenrtralia (Mo 65240).
[23] Su, L.J., Yin J. , Zhou W. 2010 Influences of overburden pressure and soil dilation on soil nail pull-out resistance. Computers and Geotechnics, 37(4):555-564
[24] Zhou W.H., Yin J.H. & Hong C.Y. 2010 Finite element modelling of pullout testing on a soil nail in a pullout box under different overburden and grouting pressures. Canadian Geotechnical Journal, 48, 557–567 .
[25] Xinyu Y., Shanyong W., Qiong W., Scott W., Daichao S. 2017. Numerical and experimental studies of the mechanical behaviour for compaction grouted soil nails in sandy soil, Computers and Geotechnics, volume 90 : 202-214.
[26] Oliaei M., Norouzi B., Binesh S.M. 2019 Evaluation of soil-nail pullout resistance using mesh-free method , Computers and Geotechnics, volume 116 : 1-13.
[27] Yuan J., Lin P., Mei G., Hu Y. 2019 Statistical prediction of deformations of soil nail walls , Computers and Geotechnics, volume 115 : 1-13.