ارزیابی احتمالاتی تاثیر پارامترهای خوردگی از نوع یکنواخت بر پیوستگی بین بتن و میلگرد

نوع مقاله : پژوهشی اصیل (کامل)

نویسنده
دانشکده صنعت و معدن چرام، دانشگاه یاسوج، ایران، چرام
چکیده
خوردگی میلگردها در سازه‌های بتن آرمه دارای اثرات مخربی است که مجموع این اثرات موجب تقلیل مقاومت و کاهش دوام این نوع سازه‌ها می‌شود. یکی از مهمترین اثرات خوردگی میلگرد، کاهش پیوستگی بین بتن و میلگرد است که در شرایط بحرانی موجب کاهش شدید مقاومت بتن و همچنین تغییر مود شکست سازه بتن مسلح می‌شود. به دلیل غیرهمگن بودن و همچنین متفاوت بودن خواص بتن‌های مختلف، مدل‌های آزمایشگاهی و تحلیلی ارائه شده برای تخمین میزان چسبندگی بتن و میلگرد برای مقادیر مختلف خوردگی دارای تفاوت‌های زیادی می‌باشند. در این مقاله با گردآوری تعداد زیادی از نتایج آزمایشگاهی موجود، چند مدل جدید با در نظر گرفتن عدم قطعیت پارامترهای موثر ارائه شده است. برای بدست آوردن این مدل‌ها نتایج آزمایشگات بر اساس قطر میلگرد دسته بندی شده اند و برای هر قطر میلگرد یک رابطه ارائه شده است. با توجه به اینکه مدل‌های ارائه شده بر مبنای درصد کاهش سطح میلگرد در طی فرآیند خوردگی می‌باشند، در این پژوهش اثر عدم قطعیت در شدت جریان خوردگی و قطر میلگرد به صورت کمی مورد بررسی قرار گرفته است. بر اساس نتایج حاصله، کاهش پیوستگی در طی دوره گسترش خوردگی به صورت تابع نمایی است و اثر عدم قطعیت چگالی جریان خوردگی بیشتر از عدم قطعیت قطر میلگرد است. اثر عدم قطعیت‌ها در ضریب تغییرات نتایج بیشتر از اثر آن بر مقدار میانگین نتایج می‌باشد. مقدار کاهش برای میلگردهای به قطر کوچکتر، کمتر از میلگردهای بزرگتر بدست آمده است به طوریکه برای میلگردهای به قطر 10 و 16 میلیمتر در خوردگی 15 درصد، نسبت پیوستگی به پیوستگی اولیه به ترتیب برابر با 46/0 و 28/0 بوده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Probabilistic evaluation of the effect of uniform corrosion parameters on the bond strength between concrete and reinforcement

نویسنده English

seyed abbas hosseini
faculty of technology and mining, Yasouj University, Iran, Choram
چکیده English

Reinforcement corrosion in concrete structures is considered as one of the main important issues that degrade the durability of RC structures. One of the most important effects of reinforcement corrosion is to reduce the bond between concrete and rebar. Bond strength enables the force transfer from reinforcing steel bar into concrete and guarantees the composite manner of reinforced concrete structures. Many empirical models have been developed to estimate bond strength during the corrosion propagation period. The experimental results are different depending on the test conditions and how to prepare the samples. Models presented by different researchers, even for the same basic assumptions, have fundamental differences in the predicted bond strength, which causes uncertainty in the choice of model and results. In this paper by regression of existing empirical results, some different models are presented for each bar diameter. The reinforcement diameter and corrosion current density are two basic variables in bond degradation models that have been considered for investigation of uncertainty in proposed models. Based on the results, the bond reduction during the corrosion propagation is exponential and the effect of the uncertainty of the corrosion current density is greater than the bar diameter. The effect of uncertainties on the coefficient of variation of the results is more than the effect on the mean. The bond reduction for the smaller diameter bars was lower than the larger bars such that for 10 and 16 mm diameters at 15% corrosion, the bond to primary bond ratio was 0.46 and 0.28, respectively.

کلیدواژه‌ها English

reinforcement corrosion
bond strength
probabilistic model
chloride ingress
concrete durability
Chung L., Cho S. H., Kim J. H. J. & Yi S. T. 2004 Correction factor suggestion for ACI development length provisions based on flexural testing of RC slabs with various levels of corroded reinforcing bars. Engineering structures, 2004. 26(8), 1013-1026.
Keshtegar B., 2017 Parametric Study of Pitting Corroded Steel Bars for Reinforcement Concrete Beams using Statistical Analysis. Modares Civil Engineering Journal, 17(2), 235-246. (in Persian).
Bilek V., Bonczkova S., Hurta J., Pytlik D. & Mrovec M. 2017 Bond strength between reinforcing steel and different types of concrete. Procedia Engineering,. 190, 243-247.
Kwon S.J., Na U. J., Park S. S. & Jung S. H. 2009 Service life prediction of concrete wharves with early-aged crack: Probabilistic approach for chloride diffusion. Structural Safety, 31(1), 75-83.
Hájková K., Smilauer V., Jendele L. & Cervenka J. 2018 Prediction of reinforcement corrosion due to chloride ingress and its effects on serviceability. Engineering Structures, 174, 768-777.
Al-Sulaimani G., Kaleemullah M., & Basunbul I. A. 1990 Influence of corrosion and cracking on bond behavior and strength of reinforced concrete members. Structural Journal, 87(2), 220-231.
Rodriguez J., Ortega L., & Casal J. 1994 Corrosion of reinforcing bars and service life of reinforced concrete structures: corrosion and bond deterioration. International conference on concrete across borders, Odense, Denmark.
Lindvall A. 1998 Duracrete–probabilistic performance based durability design of concrete structures. 2nd Int. PhD. Symposium in civil engineering. Goteborg, Sweden.
Tang D. 2007 Influence of chloride-induced corrosion cracks on the strength of reinforced concrete, Ms. C. thesis in Environmental and Chemical Engineering, RMIT University.
Coccia S., Imperatore S. & Rinaldi Z. 2016 Influence of corrosion on the bond strength of steel rebars in concrete. Materials and structures, 49(1-2), 537-551.
Zhu W., Dai J. G. & Poon C. S. 2018 Prediction of the bond strength between non-uniformly corroded steel reinforcement and deteriorated concrete. Construction and Building Materials, 187, 1267-1276.
Cabrera J. 1996 Deterioration of concrete due to reinforcement steel corrosion. Cement and concrete composites, 18(1), 47-59.
Lin H. & Zhao Y. 2016 Effects of confinements on the bond strength between concrete and corroded steel bars. Construction and Building Materials, 118, 127-138.
Stanish K., Hooton R. & Pantazopoulou S. 1999 Corrosion Effects on Bond Strength in Reinforced Concrete. Structural Journal, 96(6), 915-921.
Bhargava K., Ghosh A. K., Mori Y. & Ramanujam S. 2007 Corrosion-induced bond strength degradation in reinforced concrete—Analytical and empirical models. Nuclear Engineering and Design, 237(11), 1140-1157.
Lundgren K. 2002 Modelling the effect of corrosion on bond in reinforced concrete. Magazine of Concrete Research, 54(3), 165-173.
Wang X. & Liu X. 2004 Modeling bond strength of corroded reinforcement without stirrups. Cement and Concrete Research, 34(8), 1331-1339.
Higgins C., et al. 2003 Shear capacity assessment of corrosion-damaged reinforced concrete beams. Oregon. Dept. of Transportation. Research Unit. USA.
Liu T. & Weyers R. 1998 Modeling the dynamic corrosion process in chloride contaminated concrete structures. Cement and Concrete Research, 28(3), 365-379.
Al-Shannag M. J. & Charif A. 2017 Bond behavior of steel bars embedded in concretes made with natural lightweight aggregates. Journal of King Saud University-Engineering Sciences, 29(4), 365-372.
Amleh L. & Mirza S. 1999 Corrosion influence on bond between steel and concrete. Structural Journal, 96(3), 415-423.
Lin H., et al. 2019 State-of-the-art review on the bond properties of corroded reinforcing steel bar. Construction and Building Materials, 213, 216-233.
Fang C., et al. 2004 Corrosion influence on bond in reinforced concrete. Cement and concrete research, 34(11), 2159-2167.
Mansoor Y. A. & Zhang Z. Q. 2013 The reinforcement bond strength behavior under different corrosion condition. Res J Appl Sci Eng Technol, 5, 2346-2353.
Mangat P. & Elgarf M. 1999 Bond characteristics of corrding reinforcement in concrete beams. Materials and structures, 32(2), 89-97.
Chung L., Kim J.-H. J. & Yi S. T. 2008 Bond strength prediction for reinforced concrete members with highly corroded reinforcing bars. Cement and concrete composites, 30(7), 603-611.
Berra M., Castellani A. & Coronelli D. 1997 Bond in reinforced concrete and corrosion of bars. in Proceedings of the seventh international conference on structural faults and repair. Edinburgh, United Kingdom.
Abosrra L., Ashour A. & Youseffi M. 2011 Corrosion of steel reinforcement in concrete of different compressive strengths. Construction and Building Materials, 25(10), 3915-3925.
Imperatore S. & Rinaldi Z. 2009 Mechanical behavior of corroded rebars and influence on the structural response of R/C elements. Proceedings of concrete repair, rehabilitation and retrofitting II. CRC Press, London, 489-495.
Almusallam A. A., Al-Gahtani A. S. & Aziz A. R. 1996 Effect of reinforcement corrosion on bond strength. Construction and building materials, 10(2), 123-129.
Tondolo F. 2015 Bond behavior with reinforcement corrosion. Construction and Building Materials, 93, 926-932.
Wang X. G., et al. 2011 Bond strength of corroded steel bars in reinforced concrete structural elements strengthened with CFRP sheets. Cement and Concrete Composites, 33(4), 513-519.
Revert A. B., Weerdt K. D., Hornbostel K., Geiker M. R. 2018 Carbonation-induced corrosion: Investigation of the corrosion onset, Construction and Building Materials, 162, 847-856.
Zhou Y., Gencturk B., William K., Attar A., 2014 Carbonation-Induced and Chloride-Induced Corrosion in Reinforced Concrete Structures. Journal of Materials in Civil Engineering, 27(9), 421-438.
Yalciner H., Eren O. & Sensoy S. 2012 An experimental study on the bond strength between reinforcement bars and concrete as a function of concrete cover, strength and corrosion level. Cement and Concrete Research, 42(5), 643-655.
Lee H. S., Noguchi T. & Tomosawa F. 2002 Evaluation of the bond properties between concrete and reinforcement as a function of the degree of reinforcement corrosion. Cement and Concrete research, 32(8), 1313-1318.
Castel A., François R. & Arliguie G. 2000 Mechanical behaviour of corroded reinforced concrete beams—Part 2: Bond and notch effects. Materials and Structures, 33(9), 545-551.
Blomfors M., et al. 2018 Engineering bond model for corroded reinforcement. Engineering Structures, 156, 394-410.
Zhao Y., et al. 2013 Bond behaviour of normal/recycled concrete and corroded steel bars. Construction and building materials, 48, 348-359.
Andrade C., Sarria J. & Alonso C. 1996 Corrosion Rate Field Monitoring of Post – Tensioned Tendons in Contact with Chlorides. Durability of Building Materials and Components, 2, 959–967.
Bhargava K., et al. 2007 Ultimate flexural and shear capacity of concrete beams with corroded reinforcement. Structural Engineering and Mechanics – An International Journal, 27(3), 347–363.
Vu K. A. & Stewart M. G. 2005 Predicting the likelihood and extent of reinforced concrete corrosion-induced cracking. Journal of structural engineering, 131(11), 1681-1689.
Nowak A. S. & Collins K. R. 2012 Reliability of structures. CRC Press,