تحلیل تئوری منطقه خرابی پیرامون گمانه با استفاده از معیارهای گسیختگی مختلف

نوع مقاله : پژوهشی اصیل (کامل)

نویسندگان
دانشگاه زنجان
چکیده
حفر گمانه موجب از بین رفتن تعادل تنش­های موجود در ساختار پیرامون گمانه و تمرکز تنش فشاری بر روی دیواره خواهد شد. چنین تغییراتی در تنش­های پیرامون گمانه می­تواند موجب آسیب سازند و حالت متفاوتی از ناپایداری گمانه نظیر ریزش دیواره تحت اثر شکست برشی شود. پدیده­ی بریک-آوت گمانه (ریزش دیواره تحت اثر شکست برشی) ناشی از افزایش تنش برشی در دیواره‌­ی گمانه به دلیل افزایش تنش محیطی در پیرامون دیواره است. در مقاله­ی حاضر هدف، مقایسه چهار معیار گسیختگی موهر-کولمب، هوک-براون، گریفیث و فیرهرست در تخمین عمق و عرض زاویه­ای ناحیه خرابی بدست آمده از دیواره گمانه، تحت اثر تنش­های برجای ناهمسان افقی است. نتایج نشان می­دهد که با استفاده از تابع خرابیِ معیارهای گسیختگی (F) در صفحه­ی σ1-σ3 می­توان مناطق خرابی، دست نخورده و مرز گسیختگی پیرامون گمانه را بدست آورد. مساحت زیر منحنی هر یک از این معیارها در صفحه­ ی σ1-σ3 هر چقدر بیشتر باشد، ناحیه خرابی کمتری برای آن معیار در پیرامون گمانه رخ خواهد داد، به طور مثال مساحت زیر منحنی در صفحه­ی σ1-σ3 برای معیار گریفیث کمتر از مساحت زیر منحنی سایر معیارها است، بنابراین منطقه خرابی با در نظر گرفتن معیار گریفیث بیشتر از سه معیار دیگر است. عرض زاویه­ای بدست آمده از معیارهای هوک-بروان، موهر-کولمب و فیرهرست برخلاف معیار گریفیث بر هم منطبق­اند زیرا هر سه معیار محور σ1 را در عرض یکسانی در صفحه­ ی σ1-σ3قطع می­کنند. همچنین مقدار عمق خرابی در راستای تنش برجای کمینه برای دو معیار فیرهرست و گریفیث به ازای مقدار ثابت برای اختلاف تنش­های برجا σd=σH-σh، بیشتر از دو معیار دیگر بدست آمده است. با مقایسه معیارهای گسیختگی مشاهده شد، نتایج معیار فیرهرست و گریفیث با افزایش نسبت تنش­های برجا (σH/σh)، برخلاف معیارهای هوک-براون و موهر-کولمب به نتایج آزمایشگاهی نزدیک­تر است.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Theoretical analysis of the damaged zone around the borehole using different failure criteria

نویسندگان English

Ali Lakirouhani
Mohammad Bahrehdar
University of zanjan
چکیده English

Actually, after drilling a borehole, some materials would be eliminated from the original rock mass. The exhumed materials no longer can carry the stresses transferred to the rock surrounding the borehole. The process represents a stress concentration in the rock around the borehole. The so-called borehole breakout failure results from an enhancement in shear stress on the borehole wall because of the excavation-induced increase of the hoop stress surrounding the wall. Vertical borehole breakouts generated via un-equal horizontal in-situ stresses are usually focused in two opposed areas along the least horizontal in-situ stress. Excavation cause loss of balance stresses around the borehole and also cause compressive stress concentration on the walls. Changes in stresses around the borehole may cause formation damage. This status results in other modes of borehole instability such as collapsing of the wall due to shearing failure. Breakout phenomenon (collapsed walls under shear failure) will occur by increased shear stress at the borehole wall which by itself is due to an increase in hoop stress on the wall. In this paper, the goal is to compare four failure criteria including, Mohr-Coulomb, Hoek-Brown, Griffith and Fairhurst to estimate the depth and angular width of the borehole wall in damaged zone, where the stresses are heterogeneous. The results show that damaged zone, undamaged zone and boundary curve of failure around the borehole, can be obtained using the function of failure criteria (F) in σ13 plane. The more that the area under the curves of these criteria would be in σ13 plane, the less damaged zone will occur around the borehole. For instance, the area under the curve for Griffith criteria in σ13 plane, is less than the area of other criteria. So damaged area in Griffith criteria is more than 3 other criteria. Angular width obtained from Hoek-Brown criterion, Mohr-Coulomb criterion and Fairhrust criterion (unlike Griffith) coincide, because these 3 criteria cut the σ1 axis with the same width in σ13 plane. Also, with the constant value for difference of in-situ stresses (σdHh), depth of the failure in minimum in-situ stress direction is more in Griffith and Fairhrust criteria in compare with 2 other criteria. By comparing the failure criteria, it has been observed that, with an increase in in-situ stresses ratio (σHh), the results of Griffith and Fairhrust criteria are more close to experimental results in compare with 2 other criteria (Hoek-Brown and Mohr-Coulomb).

کلیدواژه‌ها English

.
Depth
Angular width
Damage zone
Borehole breakout
1. Aadnoy, B. and Looyeh, R. “Petroleum Rock Mechanics: Drilling Operations and Well Design”, (2th Edition), Elsevier Publication, New York, NY, USA (2010).
2. Amadei, B. and Stephansson, O. “Rock stress and its measurement”, (1th Edition), Chapman & Hall, London (1997).
3. Barton, C.A., Tesler, L.G. and Zoback, M.D., “Interactive Image Analysis of Borehole Televiewer Data”,Palaz I., Sengupta S.K. (eds) Automated Pattern Analysis in Petroleum Exploration, Springer, New York, NY (1992).
4. Leeman, ER. “The treatment of stress in rock: I. the rock stress measurement: II. Borehole rock stress measuring instrument: III. The results of some rock stress investigations”, J S Afr Inst Min Met; 65:4584-254, 114 (1964).
5. Bell, J.S. and Gough, D.I. “Northeast-southwest compressive stress in Alberta: Evidence from oil wells”, Earth and Planet Sci. Let, Vol. 45, pp. 475-482 (1979).
6. Haimson, B.C., Herrick, C.G. “Borehole breakouts and in situ stress”, Proc. 12th Annual Energy-Sources Technology Conf. and Exhib., Drilling Symp., 22, 17–22, Houston, TX (1989).
7. Mastin, L.G. Development of borehole breakouts in sandstone. MSc thesis, Stanford University (1984).
8. Martin, C.D., Martino, J.B. and Dzik, E.J. Comparison of borehole breakouts from laboratory and field tests, in Proc. Eurock '94: Int. Symp. On Rock Mech. in Petrol. Eng., Delft, Balkema, Rotterdam, 183-90 (1994).
9. Van den Hoek, PJ. “Prediction of different types of cavity failure using bifurcation theory”, Rock mechanics in the national interest. In: Proceedings of 38th rock mechanical symposium, AA Balkema Rotterdam (2001).
10. Haimson, B. and Lee, H.. “Borehole breakouts and compaction bands in two high-porosity sandstones”, Int. J. Rock Mech. Min. Sci, 41(2), 287-301 (2004).
11. Haimson, B.C. “Micromechanisms of borehole instability leading to breakouts in rocks”, Int. J. Rock. Mech. Min.Sci., 44(2), 157-173 (2007).
12. Cerasi P., Papamichos E., Stenebraten J. F. “Quantitative sand-production prediction: Friction-dominated flow model”, SPE Latin American and Caribbean Petroleum Engineering Conference. Rio de Janeiro, Brazil. no.SPE94791 (2005).
13. Lee, M., Haimson, B. “Laboratory study of borehole breakouts in Lac du Bonnet granite: a case of extensile failure mechanism”, Int. J. Rock Mech. Min. Sci. Geomech. Abstr, Vol. 30, No. 7, pp. 1039-1045 (1993).
14. Haimson, B.C., Kovacich, J. “Borehole instability in high-porosity Berea sandstone and factors affecting dimensions and shape of fracture-like breakouts”, Engineering Geology, Vol. 69, No. 3-4, pp. 219-231 (2003).
15. Lin H; Oh J; Canbulat I; Stacey TR. “Experimental and Analytical Investigations of the Effect of Hole Size on Borehole Breakout Geometries for Estimation of In Situ Stresses”, Rock Mechanics and Rock Engineering, doi.org/10.1007/s00603-019-01944-z (2019).
16. Zoback, M.D., Moos, L., Mastin, L.G. Anderson, R.N. “Wellbore breakouts and in situ stress”, J. Geophys. Res., Vol. 90, pp. 5523-5538 (1985).
17. Zheng, Z., Kemeny, J., Cook, N.G.W. “Analysis of borehole breakouts”, Journal of Geophysical Research, Vol. 94, No. B6, pp. 7171-7182 (1989).
18. Herrick, C.G. & Haimson, B.C. “ Modeling of episodic failure leading to borehole breakouts in Alabama limesonte”, In P. Nelson and S. Laubach (eds), Rock Mechanics; Models and Measurements, Austin, TX: 217–224, Rotterdam: Balkema (1994).
19. Rahmati, H., Nouri, A., Chan, D. and Vaziri, H. “Simulation of Drilling-Induced Compaction Bands Using Discrete Element Method”, International Journal of Numerical and Analytical Methods in Geomechanics, Vol. 38, No. 1: 37-50, January (2014).
20. Lee. H. Moon. T, and. Haimson B. C. “Borehole breakouts induced in Arkosic sandstones and a discrete element analysis,” Rock Mechanics and Rock Engineering, vol. 49, no. 4, pp. 1369–1388 (2016).
21. Duan, K & Kwok, CY. “Evolution of stress-induced borehole breakout in inherently anisotropic rock: Insights from discrete element modeling,” Journal of Geophysical Research: Solid Earth, vol. 121, no. 1, pp. 2361–2381 (2016).
22. Sahara, David P., Schoenball, Martin. Gerolymatou, Eleni and Kohl, Thomas, “Analysis of borehole breakout development using continuum damage mechanics,” International Journal of Rock Mechanics and Mining Sciences 97 134 (2017).
23. Zhang H, Yin S, Aadnoy BS. “Finite‐element modeling of borehole breakouts for in situ stress determination,” Int J Geomech; 18 (12). 04018174 (2018).
24. Kirsch G (1898) Die Theorie der Elastizität und die Bedürfnisse der Festigkeitslehre. Zeitschrift des Vereins Deutscher Ingenieure 42(29):797–807.
25. Jaeger JC, Cook NG W,Zimmerman RW. Fundamentals of Rock Mechanics. 4th ed., Oxford: Black well Publishing. (2007).
26. Fairhurst, C., and N. G. W. Cook. “The phenomenon of rock splitting parallel to a free surface under compressive stress,” paper presented at First Congress, Int. Soc. of Rock Mech., Lisbon, Portugal (1964).
27. Hoek, E., Carranza-Torres, C.T. and Corkum, B. “Hoek-Brown Failure Criterion— 2002 Edition,” Proceedings of the 5th North American Rock Mechanics Symposium, Toronto, 7-10 July 2002, 267-273 (2003).
28. Griffith, A. A. “The phenomena of rupture and flow insolids,” J Philos Trans R Soc Lond; 221:163–198 (1921).
29. Song, I. “Borehole breakout and coredisking in westerly granite:mechanism of formation and relationship to in situ stress,” Ph.D. thesis, University of Wisconsin, p.201. (1998).
30. Cai, M. “Practical estimates of tensile strength and Hoek–Brown Strength parameter mi of brittle rocks”, Rock Mech. Rock Eng, 43(2), 167–184 (2010).