1. Aadnoy, B. and Looyeh, R. “Petroleum Rock Mechanics: Drilling Operations and Well Design”, (2th Edition), Elsevier Publication, New York, NY, USA (2010).
2. Amadei, B. and Stephansson, O. “Rock stress and its measurement”, (1th Edition), Chapman & Hall, London (1997).
3. Barton, C.A., Tesler, L.G. and Zoback, M.D., “Interactive Image Analysis of Borehole Televiewer Data”,Palaz I., Sengupta S.K. (eds) Automated Pattern Analysis in Petroleum Exploration, Springer, New York, NY (1992).
4. Leeman, ER. “The treatment of stress in rock: I. the rock stress measurement: II. Borehole rock stress measuring instrument: III. The results of some rock stress investigations”, J S Afr Inst Min Met; 65:4584-254, 114 (1964).
5. Bell, J.S. and Gough, D.I. “Northeast-southwest compressive stress in Alberta: Evidence from oil wells”, Earth and Planet Sci. Let, Vol. 45, pp. 475-482 (1979).
6. Haimson, B.C., Herrick, C.G. “Borehole breakouts and in situ stress”, Proc. 12th Annual Energy-Sources Technology Conf. and Exhib., Drilling Symp., 22, 17–22, Houston, TX (1989).
7. Mastin, L.G. Development of borehole breakouts in sandstone. MSc thesis, Stanford University (1984).
8. Martin, C.D., Martino, J.B. and Dzik, E.J. Comparison of borehole breakouts from laboratory and field tests, in Proc. Eurock '94: Int. Symp. On Rock Mech. in Petrol. Eng., Delft, Balkema, Rotterdam, 183-90 (1994).
9. Van den Hoek, PJ. “Prediction of different types of cavity failure using bifurcation theory”, Rock mechanics in the national interest. In: Proceedings of 38th rock mechanical symposium, AA Balkema Rotterdam (2001).
10. Haimson, B. and Lee, H.. “Borehole breakouts and compaction bands in two high-porosity sandstones”, Int. J. Rock Mech. Min. Sci, 41(2), 287-301 (2004).
11. Haimson, B.C. “Micromechanisms of borehole instability leading to breakouts in rocks”, Int. J. Rock. Mech. Min.Sci., 44(2), 157-173 (2007).
12. Cerasi P., Papamichos E., Stenebraten J. F. “Quantitative sand-production prediction: Friction-dominated flow model”, SPE Latin American and Caribbean Petroleum Engineering Conference. Rio de Janeiro, Brazil. no.SPE94791 (2005).
13. Lee, M., Haimson, B. “Laboratory study of borehole breakouts in Lac du Bonnet granite: a case of extensile failure mechanism”, Int. J. Rock Mech. Min. Sci. Geomech. Abstr, Vol. 30, No. 7, pp. 1039-1045 (1993).
14. Haimson, B.C., Kovacich, J. “Borehole instability in high-porosity Berea sandstone and factors affecting dimensions and shape of fracture-like breakouts”, Engineering Geology, Vol. 69, No. 3-4, pp. 219-231 (2003).
15. Lin H; Oh J; Canbulat I; Stacey TR. “Experimental and Analytical Investigations of the Effect of Hole Size on Borehole Breakout Geometries for Estimation of In Situ Stresses”, Rock Mechanics and Rock Engineering, doi.org/10.1007/s00603-019-01944-z (2019).
16. Zoback, M.D., Moos, L., Mastin, L.G. Anderson, R.N. “Wellbore breakouts and in situ stress”, J. Geophys. Res., Vol. 90, pp. 5523-5538 (1985).
17. Zheng, Z., Kemeny, J., Cook, N.G.W. “Analysis of borehole breakouts”, Journal of Geophysical Research, Vol. 94, No. B6, pp. 7171-7182 (1989).
18. Herrick, C.G. & Haimson, B.C. “ Modeling of episodic failure leading to borehole breakouts in Alabama limesonte”, In P. Nelson and S. Laubach (eds), Rock Mechanics; Models and Measurements, Austin, TX: 217–224, Rotterdam: Balkema (1994).
19. Rahmati, H., Nouri, A., Chan, D. and Vaziri, H. “Simulation of Drilling-Induced Compaction Bands Using Discrete Element Method”, International Journal of Numerical and Analytical Methods in Geomechanics, Vol. 38, No. 1: 37-50, January (2014).
20. Lee. H. Moon. T, and. Haimson B. C. “Borehole breakouts induced in Arkosic sandstones and a discrete element analysis,” Rock Mechanics and Rock Engineering, vol. 49, no. 4, pp. 1369–1388 (2016).
21. Duan, K & Kwok, CY. “Evolution of stress-induced borehole breakout in inherently anisotropic rock: Insights from discrete element modeling,” Journal of Geophysical Research: Solid Earth, vol. 121, no. 1, pp. 2361–2381 (2016).
22. Sahara, David P., Schoenball, Martin. Gerolymatou, Eleni and Kohl, Thomas, “Analysis of borehole breakout development using continuum damage mechanics,” International Journal of Rock Mechanics and Mining Sciences 97 134 (2017).
23. Zhang H, Yin S, Aadnoy BS. “Finite‐element modeling of borehole breakouts for in situ stress determination,” Int J Geomech; 18 (12). 04018174 (2018).
24. Kirsch G (1898) Die Theorie der Elastizität und die Bedürfnisse der Festigkeitslehre. Zeitschrift des Vereins Deutscher Ingenieure 42(29):797–807.
25. Jaeger JC, Cook NG W,Zimmerman RW. Fundamentals of Rock Mechanics. 4th ed., Oxford: Black well Publishing. (2007).
26. Fairhurst, C., and N. G. W. Cook. “The phenomenon of rock splitting parallel to a free surface under compressive stress,” paper presented at First Congress, Int. Soc. of Rock Mech., Lisbon, Portugal (1964).
27. Hoek, E., Carranza-Torres, C.T. and Corkum, B. “Hoek-Brown Failure Criterion— 2002 Edition,” Proceedings of the 5th North American Rock Mechanics Symposium, Toronto, 7-10 July 2002, 267-273 (2003).
28. Griffith, A. A. “The phenomena of rupture and flow insolids,” J Philos Trans R Soc Lond; 221:163–198 (1921).
29. Song, I. “Borehole breakout and coredisking in westerly granite:mechanism of formation and relationship to in situ stress,” Ph.D. thesis, University of Wisconsin, p.201. (1998).
30. Cai, M. “Practical estimates of tensile strength and Hoek–Brown Strength parameter mi of brittle rocks”, Rock Mech. Rock Eng, 43(2), 167–184 (2010).