بررسی عددی رفتار خمشی لوله‌های پر شده با بتن توام با پیش‌تنیدگی

نوع مقاله : پژوهشی اصیل (کامل)

نویسندگان
1 دانشکده عمران دانشگاه صنعتی نوشیروانی بابل
2 دانشکده مهندسی عمران دانشگاه صنعتی نوشیروانی بابل
3 دانشکده فنی مهندسی دانشگاه مازندران
چکیده
در این تحقیق، با قرار دادن لوله­ های فولادی پر شده با بتن در ناحیه فشاری و کابل پیش ­تنیده در ناحیه کششی، مفهوم جدیدی به نام تیرهای لوله­ای پر شده با بتن توام با پیش­ تنیدگی بصورت عددی مورد مطالعه قرار گرفتند. در این مقطع، لوله فولادی در ناحیه فشاری سبب بهبود مقاومت بتن و کابل­های پیش ­تنیده در ناحیه کششی سبب کنترل ترک در تیرهای بتن مسلح می­ گردد. با توجه به ناشناخته­ بودن رفتار این تیرها، هدف این تحقیق، تحلیل المان محدود پارامترهایی است که در نمونه ­های آزمایشگاهی قابل بررسی نبوده است. بنابراین بعد از صحت­ سنجی مدل المان محدود با نتایج آزمایشگاهی، مدل با اندازه واقعی ساخته شد تا رفتار خمشی مقطع مورد بررسی قرار گیرد و سپس مدل، به منظور بررسی شاخص­های نسبت میلگرد طولی، نسبت کابل پیش ­تنیده، نسبت بتن هسته و نسبت لوله فولادی توسعه داده شده است. نتایج بررسی­ ها نشان­ دهنده تأثیر افزاینده شاخص ­های نسبت کابل پیش ­تنیده و میلگرد طولی بر روی افزایش سختی خمشی و تأثیر کاهنده شاخص ­های نسبت لوله فولادی و بتن هسته بر روی سختی خمشی می­باشد. افزایش در شاخص­ های نسبت کابل پیش­ تنیده، میلگرد طولی، لوله فولادی و بتن هسته، لنگر نهایی را نیز افزایش می­ دهد. قابل ذکر است، زمانی­که شاخص­ نسبت میلگرد طولی افزایش می­ یابد، انرژی جذب شده الاستیک نیز افزایش می­ یابد. افزایش در شاخص نسبت کابل پیش ­تنیده سبب افزایش در شکل ­پذیری جابجایی، انرژی جذب شده الاستیک و کل می­ گردد. از میان این شاخص­ ها، شاخص نسبت کابل پیش­ تنیده، بیشترین تأثیر را بر روی افزایش مقاومت خمشی مقطع، شکل­ پذیری جابجایی و انرژی جذب شده کل دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Numerical investigation of flexural behaviour of Prestressed concrete-encased CFST

نویسندگان English

Zohreh Rahmani 1
Morteza Naghipour 2
Mahdi Nematzadeh 3
1 Civil Eng DeptBabol Noshirvani University of Technology
2 Civil Eng DeptBabol Noshirvani University of Technology
3 Civil Eng DeptUniversity of Mazandaran
چکیده English

Concrete-encased concrete-filled steel tube (CFST) has been presented to integrate reinforced concrete (RC) and CFSTs that have been used increasingly in high-rise buildings and bridges in the world. Concrete-encased CFST exhibits higher confinement of the concrete core, high stiffness and strength, better durability and ductility, small sectional size, higher fire resistance due to the protection of the outer RC encasement compared to CFST, avoidance of local buckling and corrosion of steel tube, and easier connection with steel RC beams. On account of the insufficient research and the unknown behavior of these beam types, in this research, prestressed concrete-encased CFST (PCE-CFST) beams that incorporate CFST in the compression zone to improve the strength of concrete, and prestressed strands in the tension zone to control cracks in reinforced concrete (RC) beams are numerically investigated. The objective of this study is the finite element analysis of parameters that are not feasible to be examined through experimental specimens. Hence, the experimental study has been done to validate the nonlinear finite element modeling and a full-scale model is constructed to explore the flexural behavior of the cross-section. The model is then developed to include parameters such as the longitudinal rebar ratio, prestressed strand ratio, core concrete ratio, and the steel tube ratio indices. Based on findings, a good agreement was observed in the moment-deflection diagrams and the failure modes between the experimental and numerical results. Then the model was developed and 9 PCE-CFST beams is modeled by finite element software of ABAQUS to investigation of longitudinal rebar ratio (0.0257, 0.00856, 0.00286), prestressed strand ratio (0.00228, 0.00912, 0.000569), core concrete ratio (0.0206, 0.07799, 0.0281), and the steel tube ratio (0.01385, 0.00615, 0.000385) indices. The beam specimens were subjected to four-point loading and the parameters of bearing capacity, moment-deflection curve, energy absorption, ductility, failure mode, bending stiffness were investigated. Examination of indices revealed that as the prestressed strand ratio increases, displacement ductility, flexural stiffness and ultimate moment increase by 1.47, 1.06 and 3.22 times, respectively. Further, the elastic and entire absorbed energy of cross-section escalate by 1.04 and 3.22 times respectively, with increasing prestressed strand ratio. Likewise, by increasing the index of longitudinal rebar ratio, flexural stiffness and ultimate moment are 1.18 and 1.22 folded, respectively. In addition, the elastic absorbed energy is increased by 2.85 times as the longitudinal rebar ratio increased. As the ratios of core concrete and steel tube increase, the flexural stiffness is reduced by 5% and 6%, respectively. While, by increasing the core concrete and steel tube ratios, the ultimate moment grow by 1.05 and 1.29 times, respectively. The only effective index on the cross-section ductility and the entire absorbed energy is the prestressed strand ratio. The longitudinal rebar ratio has also the greatest increasing impact on the flexural stiffness and the elastic absorbed energy. Moreover, the core concrete ratio has the least effect (less than 10%) on the flexural stiffness. The prestressed strand and core concrete indices have respectively the highest and lowest escalating effects on the ultimate moment. As a consequence, an increase in the prestressed strand and longitudinal rebar ratios lead to a rise in the flexural stiffness and ultimate moment. On the contrary, an increase in the steel tube and core concrete ratios, decrease the flexural stiffness and gives a marginal increase to the ultimate moment. It was also unveiled that the failure mode of full-scale beams is flexural, and shear crack and shear capacity govern the behavior of PCE-CFST beams with shear span-to-depth ratios of less than 2. As shear span-to-depth ratio increases, that is, the shear failure mode shifts to flexural, flexural stiffness decreases, yet the ultimate bending moment increases. Additionally, a strut-and-tie model was proposed to describe the load transfer mechanism of PCE-CFST beams.

کلیدواژه‌ها English

Finite element analysis
Concrete-filled steel tube (CFST)
Prestressed Strand
Flexural Behavior
[1] Cai J, Pan J, Tan J, Vandevyvere B, Li X. Nonlinear analysis of ECC-encased CFST columns under axial compression. Journal of Building Engineering 2020: 101401.
[2] Chen J.Y, Li W, Han L.H, Wang F.C, Mu T.M. Structural behaviour of concrete-encased CFST box stub columns under axial compression. Journal of Constructional Steel Research 2019: 158: 248-262.
[3] Nematzadeh M, Hajirasouliha I, Haghinejad A, Naghipour M. Compressive behavior of circular steel-confined concrete stub columns with active and passive confinement. Steel and composite structures 2017: 24 (3): 323-337.
[4] Li S, Han L.H, Hou C. Concrete-encased CFST columns under combined compression and torsion: Analytical behaviour. Journal of Constructional Steel Research 2018: 144: 236-252.
[5] Han LH, Li W, Bjorhovde R. Developments and advanced applications of concrete-filled steel tubular (CFST) structures: Members. J Constr Steel Res 2014: 100: 211-228.
[6] Wang G. Study on flexural behaviours of steel tube confined concrete members and composite steel tube concrete members. [Master Dissertations] Beijing, China: Tsinghua University: 2004 [in Chinese].
[7] Yuan A, Dai H, Sun D, Cai J. Behaviors of segmental concrete box beams with internal tendons and external tendons under bending. Eng Struct 2013: 48: 623-34.
[8] An Y.F, Han L.H, Roeder C. Flexural performance of concrete-encased concrete filled steel tubes. Mag Concr Res 2014: 66 (5): 249-267.
[9] Han LH, An Y.F, Roeder C, Ren QX. Performance of concrete-encased CFST box members under bending. J Constr Steel Res 2014: 106: 138-153.
[10] Ahmed A.A, Hassan M, Masmoudi R. Effect of concrete strength and tube thickness on the flexural behavior of prestressed rectangular concrete-filled FRP tubes beams. Engineering Structures 2020: 205: 110112.
[11] Tuan C.Y. Aurora arch bridge-Confined concrete system speeds construction of Walkway span. Concrete International 2004: 26 (4): 64-67.
[12] Christopher Y, Tuan C.Y. Flexural behavior of non-posttensioned and posttensioned concrete-filled circular steel tubes. Journal of structural Engineering 2008: 1057-1060.
[13] Tuan C.Y. Aurora arch bridge-Confined concrete system speeds construction of Walkway span. Concrete International 2004: 26 (4): 64-67.
[14] Deng Y, Tuan C.Y, Zhou Q, Xiao Y. Flexural strength analysis of non-posttensioned and post-tensioned concrete-filled circular steel tubes. Journal of Constructional Steel Research 2011: 67: 192-202.
[15] Xu W, Hou XZ, Xu F, Zhang XF. Study on external prestressed concrete-filled steel tubular flexural member. Appl Mech Master 2011:94-96:1066-9.
[16] Zhan Y, Zhao R, Ma ZJ, XU T, Song R. Behavior of prestressed concrete-filled steel tube (CFST) beam. Engineering Structure 2016: 122: 144-155.
[17] Rahmani Z, Naghipour M, Nematzadeh M, Structural Behavior of Prestressed Self-Compacting Concrete-Encased CFST Beams, Computers and concrete, submitted
[18]ABAQUS. Standard user's manual, version 6.12. Providence, RI (USA): Dassault Systemes Corp.; 2012.
[19] Hsu Thomas T.C. and Y.L.Mo, Unified thery of concrete structures. United Kingdom: John Wiley & Sons, Ltd, 2010.
Journal of Structural Engineering (1992) 118(5), pp.1312-1332.
[20] Thai HT, UY B, Khana M, Tao Zh, Mashiri F, Numerical modelling of concrete-filled steel box columns incorporating high strength materials, Journal of Constructional Steel Research2014: 102: 256–265.
[21] Zhao XM, Wu YF and Leung AYT. Analysis of plastic hinge regions in reinforced concrete beams under monotonic loading. Engineering Structures 2012: 34: 466-482.
[22] J.Lublinear, J. Oliver, S. Oller, E. Onate. A Plastic-Damage model of concrete. International Journal of Solids and Structures. 1989; 25: 299-329.
[23] Lee, J. G.L. Fenves. Plastic-Damage Model for cyclic loading of concrete structures. Journal of Engineering Mechanics, 1998; 124(8): 892-900.
[24] ACI 318-11. Building code requirements for structural concrete and commentary. Detroit (USA): American Concrete Institute: 2011.
[25] Liu X, Xu Ch, Liu J, Yang Y. Research on special-shaped concrete-filled steel tubular columns under axial compression. Journal of Constructional Steel Research 2018: 147: 203-223.
[26] Hognestad E. A study of combined bending and axial load in reinforced concrete members. Bulletin 399. University of Illinois Engineering Experimental Station. Urbana. 111. NOV 1951, 128.
[27] Han LH, An YF. Performance of concrete-encased CFST stub columns under axial compression. J Constr Steel Res 2014; 93:62–76.
[28] Han LH, Yao G.H, Tao Z. Performance of concrete-filled thin-walled steel tubes under pure torsion. Thin-Walled Strut 2007: 45(1): 24-36.
[29] Shen JM, Wang CZ and Jiang JJ. Finite element method of reinforced concrete and limited analysis of plates and shells. Tsinghua University Press, Beijing, China (in Chinese) 1993.