بررسی کفایت برون مرکزی اتفاقی پیشنهاد شده توسط استاندارد 2800 برای در نظر گرفتن مولفه دورانی زلزله

نوع مقاله : پژوهشی اصیل (کامل)

نویسندگان
1 واحد تهران جنوب، دانشگاه آزاد اسلامی
2 انگلستان دانشگاه بریتیش کلمبیا
3 واحد علوم و تحقیقات، دانشگاه آزاد اسلامی
چکیده
به دلیل در دسترس نبودن داده­های سه مولفه دورانی زلزله­ها، تحلیل لرزه­ای ساختمان­ها معمولا تنها با اعمال مولفه­های انتقالی انجام می­شود. استاندارد 2800 برای در نظر گرفتن اثر مولفه پیچشی زلزله در تحلیل لرزه­ای این سازه­ها برون مرکزی اتفاقی را پیشنهاد نموده است. مقاله حاضر بر روی بررسی اثرات مولفه پیچشی بر پاسخ لرزه­ای سازه­های ساختمانی با مشخصات دینامیکی متفاوت متمرکز شده است. علاوه بر این کفایت 5 درصد برون مرکزی اتفاقی برای گنجاندن اثر مولفه پیچشی در تحلیل تاریخچه زمانی غیرخطی نیز مطالعه گردیده است. برای این منظور تعداد زیادی مدل یک طبقه سخت و نرم پیچشی با دوره تناوب­های انتقالی بین 05/0 تا 2 ثانیه و سه مقدار خروج از مرکزیت 0، 15 و 25% با استفاده از نرم افزار OpenSees مدلسازی شده و یکبار تحت تحریکات انتقالی و بار دیگر تحت تحریک انتقالی-دورانی قرار گرفته­اند. این مدل­ها مجددا طبق توصیه استاندارد 2800 با جابجایی مرکز جرم به میزان 05/0 بعد ساختمان در جهات مثبت و منفی بوسیله مولفه­های انتقالی تحلیل شده­اند. در این تحقیق 14 زلزله حوزه دور انتخاب شده و مولفه دورانی آن­ها بوسیله روشی غیر مستقیم بر پایه تئوری انتشار امواج لرزه­ای استخراج گردیده است. در مجموع بیش از 2600 تحلیل دینامیکی غیرخطی در این مطالعه پارامتریک انجام شده است. مقایسه پاسخ­های حاصل از تحلیل­ها نشان می­دهد که مولفه پیچشی زلزله اثر قابل ملاحظه­ای بر ساختمان­ها دارد و این اثر تابعی از مشخصات دینامیکی و پیچشی سازه­ها است. تغییرمکان سازه در اثر گنجاندن مولفه پیچشی در ترکیب بار لرزه­ای می­تواند تا 50% افزایش یابد. در ضمن نتایج بیان می­دارد که 05/0 برون مرکزی اتفاقی برای شبیه­سازی آثار مولفه پیچشی در تحلیل غیرخطی برای اکثر موارد جایگزین مناسبی نیست و منجر به نتایج غیرواقعی و دست پایین می­شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Investigating the Adequacy of Accidental Eccentricity Recommended by Seismic Design Codes to Consider the Rotational Components in Nonlinear Dynamic Analysis

نویسندگان English

Saman Rahat Dahmardeh 1
Mehrtash Motamedi 2
Armin Aziminejad 3
1 South Tehran Branch, Islamic Azad University
2 University of British Columbia
3 Science and Research Branch, Islamic Azad University
چکیده English

Due to the lack of access to the data of three rotational components of earthquakes, seismic analysis of new buildings as well as assessment of the vulnerability of existing structures are usually carried out only by applying the translational components of earthquakes. Iranian Standard 2800 proposed an accidental eccentricity for considering the earthquake rotational component effect in the seismic analysis of building structures. The present investigation is focused on the effects of earthquake rotational excitation on the seismic response of buildings having various dynamic properties which situated on a rigid foundation. In addition, adequacy of the accidental eccentricity of 5% recommended by seismic design code for inclusion of the earthquake rotational component impact in the non-linear time history analysis of buildings is studied, as well. To achieve this, a large number of one-story torsionally stiff and flexible building models with a wide range of lateral vibration periods (T=0.05 to 2sec) and three different values of inherent eccentricity of 0, 15 and 25% were modeled. These models were once excited by the translational components of ground motions and once again by both translational and rotational components of ground motions. The building models were re-analyzed after applying the 5% accidental eccentricity based on the procedure presented by Standard 2800 (shifting the center of mass in the negative and positive directions by 0.05 of the plan dimension). For conducting the non-linear time history analyses, a number of earthquakes were selected and the rotational records for these events were generated by use of an indirect single station method based on the seismic wave propagation in an elastic and homogeneous medium. In total, over than 2600 nonlinear dynamic analyses have been conducted in this numerical research. In order to determine the role of earthquake rotational excitation in the seismic behavior of buildings, the variations of displacement response for the left and right sides of diaphragm and the torsion of diaphragm about the mass center due to the effect of rotational component were evaluated. By comparing the results obtained in this study, it is found that the rotational component has a substantial influence on the structural responses, which this effect is a function of the fundamental dynamic characteristics of system such as uncoupled rotational to translational frequency ratio, lateral vibration period and irregularity. The displacement of diaphragm can be increased up to 50% when the rotational component of ground motion is included in the seismic load combinations. Decreasing the frequency ratio leads to increase of the rotational component effect for the stiff buildings with short periods, while in the other cases reduces the growth of displacement due to the rotational component. Furthermore, results indicate that the accidental eccentricity of 5% cannot increase the seismic responses as much as the earthquake rotational motion, and leads to unreal and underestimate results for the most of lateral vibration periods. Thus, the current Standard 2800 approach cannot be considered as an appropriate alternative for considering the accidental torsion induced by the rotational component of ground motion, and it seems that this approach needs to be re-evaluated.

کلیدواژه‌ها English

seismic analysis
Torsionally stiff building
Torsionally flexible building
Accidental eccentricity
Earthquake rotational excitation
1. Kalkan E. & Graizer V. 2007 Coupled Tilt and Translational Ground Motion Response Spectra. Journal of Structural Engineering, 133(5), 609–619.
2. Trifunac M.D. 2009 The role of strong motion rotations in the response of structures near earthquake faults. Soil Dynamics and Earthquake Engineering, 29(2), 382–393.
3. Falamarz-Sheikhabadi M.R. 2014 Simplified relations for the application of rotational components to seismic design codes. Engineering Structures, 59, 141–152.
4. Hart G.C., DiJulio R.M. & Lew M. 1975 Torsional response of high-rise buildings. Journal of the Structural Division, 101, 397–415.
5. Bycroft G.N. 1980 Soil-foundation interaction and differential ground motions. Earthquake Engineering & Structural Dynamics, 8(5), 397–404.
6. Trifunac M.D., Todorovska M.I. & Ivanovic S.S. 1996 Peak velocities, and peak surface strains during Northridge, California earthquake of 17 January 1994. Soil Dynamics and Earthquake Engineering, 15(5), 301–310.
7. Newmark N.M. 1969 Torsion in symmetrical building. Proceedings of the 4th World Conference on Earthquake Engineering. Santiago, Chile.
8. Ghafory-Ashtiany M. & Singh M.P. 1986 Structural response for six correlated earthquake components. Earthquake Engineering & Structural Dynamics, 14(1), 103–119.
9. Falamarz-Sheikhabadi M.R. & Ghafory-Ashtiany M. 2012 Approximate formulas for rotational effects in earthquake engineering. Journal of Seismology, 16(4), 815–827.
10. Falamarz-Sheikhabadi M.R., Zerva A. & Ghafory-Ashtiany M. 2017 Revised Seismic Intensity Parameters for Middle-Field Horizontal and Rocking Strong Ground Motions. Journal of Structural Engineering, 143(1), 04016155,1–10.
11. Lee V.W. & Trifunac M.D. 1985 Torsional accelerograms. Soil Dynamics and Earthquake Engineering, 4(3), 132–139.
12. Lee V.W. & Trifunac M.D. 1987 Rocking strong earthquake accelerations. Soil Dynamics and Earthquake Engineering, 6(2), 75–89.
13. Li H.N., Sun L.Y. & Wang S.Y. 2002 Frequency dispersion characteristics of phase velocities in surface wave for rotational components of seismic motion. Journal of Sound and Vibration, 258(5), 815–827.
14. Li H.N., Sun L.Y. & Wang S.Y. 2004 Improved approach for obtaining rotational components of seismic motion. Nuclear Engineering and Design, 232(2), 131–137.
15. Lee V.W. & Liang J. 2008 Rotational Components of Strong-motion Earthquakes. Proceedings of the 14th World Conference on Earthquake Engineering, Beijing, China, October.
16. Basu D., Whittaker A.S. & Constantinou M.C. 2012 Estimating Rotational Components of Ground Motion Using Data Recorded at a Single Station, Journal of Engineering Mechanics, 138(9), 1141-1156.
17. Basu D., Whittaker A.S. & Constantinou M.C. 2012 Characterizing the rotational components of earthquake ground motion. Technical Report MCEER-12-0005. Buffalo, New York, USA: State University of New York at Buffalo.
18. Vicencio F. & Alexander N.A. 2019 A parametric study on the effect of rotational ground motions on building structural responses. Soil Dynamics and Earthquake Engineering, 118, 191–206.
19. De La Llera J.C. & Chopra A.K. 1994 Accidental torsion in buildings due to base rotational excitation. Earthquake Engineering & Structural Dynamics, 23(9), 1003–1021.
20. Shakib H. & Tohidi R.Z. 2002 Evaluation of accidental eccentricity in buildings due to rotational component of earthquake. Journal of Earthquake Engineering, 6(4), 431–45.
21. Ghayamghamian M.R., Nouri G.R., Igel H. & Tobita T. 2009 The effects of torsional ground motion on structural responses: code recommendation for accidental eccentricity. Bulletin of the Seismological Society of America, 99(2B), 1261–1270.
22. Basu D., Constantinou M.C. & Whittaker S.A. 2014 An equivalent accidental eccentricity to account for the effects of torsional ground motion on structures. Engineering Structures, 69, 305–377.
23. Basu D., Whittaker S.A. & Constantinou M.C. 2015 Characterizing rotational components of earthquake ground motion using a surface distribution method and response of sample structures. Engineering Structures, 99, 685–707.
24. Teymoori E., Abbasi S. & Moradloo J. 2018 Seismic Analysis of Cylindrical Ground Liquid Storage Tanks Incorporating the Effects of Rotational Components of Earthquake. Modares Civil Engineering Journal (M.C.E.J), 18(4), 251–264.
25. Özşahin E. & Pekcan G. 2019 Effect of torsional ground motion on the seismic response of highway bridges. Bulletin of Earthquake Engineering, 17(5), 2603–2625.
26. Bońkowski P.A., Zembaty Z. & Minch M.Y. 2019 Engineering analysis of strong ground rocking and its effect on tall structures. Soil Dynamics and Earthquake Engineering, 116, 358–370.
27. Loghman V., Tajammolian H. & Khoshnoudian F. 2015 Effects of rotational components of earthquakes on seismic responses of triple concave friction pendulum baseisolated structures. Journal of Vibration and Control, 23(9), 1495–1517.
28. Tajammolian H., Khoshnoudian F. & Loghman V. 2017 Rotational components of near-fault earthquakes effects on triple concave friction pendulum base-isolated asymmetric structures. Engineering Structures, 142, 110–127.
29. Tajammolian H. & Khoshnoudian F. 2018 Acceleration amplification due to rotational components of near-fault earthquakes in triple concave friction pendulum base-isolated structures. Canadian Journal of Civil Engineering. 45(4), 314–327.
30. Standard No. 2800 (Building and Housing Research Center) 2014 Iranian Code of Practice for Seismic Resistant Design of Buildings, 4th edition, Iran.
31. ASCE (American Society of Civil Engineers), ASCE/SEI 7–16. 2017: Minimum Design Loads and Associated Criteria for Buildings and Other Structures. ASCE, Reston, Virginia, USA.
32. Eurocode 8, Design of structures for earthquake resistance – Part 1. 2004: General rules, seismic actions and rules for buildings, CEN. EN 1998-1.
33. NZS 1170.5, New Zealand Standard, Structural design actions – Part 5. 2004: Earthquake actions. Wellington, New Zealand.
34. NBCC (National Building Code of Canada -Volume 1), National Research Council of Canada, Ottawa, 2015.
35. Haj-Seiyed-Taghia S.A., Moghadam A.S. & Ghafory Ashtiany M. 2014 Seismic performance of torsionally stiff and flexible multi-story concentrically steel braced buildings. The Structural Design of Tall and Special Buildings, 23(2), 146-160.
36. PEER. 2015 OpenSees (Open System for Earthquake Engineering Simulation). PEER, University of California, Berkeley, CA, USA. See http://opensees.berkeley.edu.
37. Che W. & Luo Q. 2010 Time-frequency response spectrum of rotational ground motion and its application. Earthquake Science, 23(1), 71−77