[1] Ranjbar E., Danaei M. & Ahmadieh Khanesar M. (2019) Extraction of circuit parameters using multi-objective genetic algorithm for design of non-linearly compensated operational amplifiers, Journal of Modeling in Engineering, 17(58), 20 (In Persian).
[2] Mirakhorloo F. & Najafi Kani E. (2019) Investigation and Prediction of Physical and Mechanical Properties of Gypsum/Rice Straw Composite Using ANFIS Model, Journal of Modeling in Engineering, 17(58), 11 (In Persian).
[3] Bibak H., khazaie J. & Moayedi H. (2019) Prediction of optimal mixing design for stabilized soft clay soil using Artificial Neural Networks, Journal of Modeling in Engineering, 17(57), 147-158 (In Persian).
[4] Bekdaş G., Nigdeli S. M., Kayabekir A. E. & Yang, X. S. (2019) Optimization in Civil Engineering and Metaheuristic Algorithms: A Review of State-of-the-Art Developments. Computational Intelligence, Optimization and Inverse Problems with Applications in Engineering, 2019, 111-137. Springer, Cham.
[5] Waszczyszyn Z. (2017) Artificial neural networks in civil engineering: another five years of research in Poland. Computer Assisted Methods in Engineering and Science, 18(3), 131-146.
[6] Zavadskas K., Antucheviciene J., Adeli H. & Turskis Z. (2016) Hybrid multiple criteria decision making methods: A review of applications in engineering, Scientia Iranica, 23(1), 1-20.
[7] Aggarwal Y., Aggarwal P., Sihag P., Pal M. & Kumar A. (2019) Estimation of Punching Shear Capacity of Concrete Slabs Using Data Mining Techniques, International Journal of Engineering, 32(7), 908-914.
[8] Safiee N. A. & Ashour A. (2017) Prediction of punching shear capacity of RC flat slabs using artificial neural network" Asian Journal of Civil Engineering, 18(2), 285-309.
[9] Akbarpour H. & Akbarpour M. (2017) Prediction of punching shear strength of two-way slabs using artificial neural network and adaptive neuro-fuzzy inference system, Neural Computing and Applications, 28(11), 3273-3284.
[10] Hoang N. D. (2019) Estimating punching shear capacity of steel fiber reinforced concrete slabs using sequential piecewise multiple linear regression and artificial neural network, Measurement, 137, 58-70.
[11] Hoang, N. D., Vu D. T., Tran X. L. & Tran V. D. (2017) Modeling punching shear capacity of fiber-reinforced polymer concrete slabs: a comparative study of instance-based and neural network learning, Applied Computational Intelligence and Soft Computing, 9897078.
[12] Ledesma S., Torres M., Hernández D., Aviña G. & García G. (2017) Temperature cycling on simulated annealing for neural network learning, Mexican International Conference on Artificial Intelligence, (pp. 161-171), Springer, Berlin, Heidelberg.
[13] Koza J. R. (1994) Genetic programming as a means for programming computers by natural selection." Statistics and computing, 4(2), 87-112.
[14] Golafshani E. M. (2015) Introduction of Biogeography-Based Programming as a new algorithm for solving problems, Applied Mathematics and Computation, 270, 1-12.
[15] Morsch E. (1912) Seine Theorie und Anwendung,, Reinforced Concrete Theory and Application, Der Eisenbetonbau, Konrad Wittwer Verlag, Stuttgart.
[16] Talbot A. N. (1913), Reinforced concrete wall footings and columns under concentrated loads, Research and Development Bulletin D47, Illinois.
[17] Moe J. (1961) Shearing strength of reinforced concrete slabs and footings under concentrated loads, Portland Cement Association, Research and Development Laboratories.
[18] Rankin G. I. B. & Long A. E. (1987) Predicting the punching strength of conventional slab-column specimens, Proceedings of the Institution of Civil Engineers, 82(1), 327-346.
[19] ACI 318-08, (2008) ACI Committee, and International Organization for Standardization. Building code requirements for structural concrete and commentary, American Concrete Institute.
[20] EN 1992-1-2, (2004) Eurocode 2: Design of Concrete Structures - Part 1-2. 1st ed., Brussels.
[21] Novak, P. R., Mendes, N., & Oliveira, G. H., (1999) MATLAB/SIMULINK.
[22] Elstner R. C. & Hognestad E. (1956), Shearing strength of reinforced concrete slabs. Journal Proceedings, 53(7), 29-58.
[23] Sven K. & Nylander H. (1960) Punching of concrete slabs without shear reinforcement. Elander.
[24] Moe, J. (1961). Shearing strength of reinforced concrete slabs and footings under concentrated loads. Portland Cement Association, Research and Development Laboratories.
[25] Topcu I. B. & Sarıdemir M. (2008) Prediction of compressive strength of concrete containing fly ash using artificial neural networks and fuzzy logic, Computational Materials Science 41(3), 305-311.
[26] Mowrer, R. D. & M. D. Vanderbilt. (1967) Shear strength of lightweight aggregate reinforced concrete flat plates, Journal Proceedings, 64(11), 722-729.
[27] Kinnunen S., Nylander H. & Tolf P. (1978) Investigations on punching at the division of building statics and structural engineering, Nordisk Betong, 3, 25-27.
[28] Regan P. E., Walker P. R. & Zakaria K. A. A., (1979), Tests of reinforced concrete flat slabs, CIRIA Project RP 220.
[29] Rankin G. I. B., and Long A. E. (1987) Predicting the punching strength of conventional slab-column specimens, Proceedings of the Institution of Civil Engineers, 82(1), 327-346.
[30] Tolf P. (1988) Plattjocklekens inverkan på betongplattors hållfasthet vid genomstansning: försök med cirkulära plattor. Institutionen för byggnadsstatik, Tekniska högsk.
[31] Gardner N. J. (1990) Relationship of the punching shear capacity of reinforced concrete slabs with concrete strength, Structural Journal, 87(1), 66-71.
[32] Marzouk H. & Hussein A. (1991) Experimental investigation on the behavior of high-strength concrete slabs, ACI Structural Journal, 88(6), pp. 701-713.
[33] Hoang L. C., & Pop A. (2015) Punching shear capacity of reinforced concrete slabs with headed shear studs, Magazine of Concrete Research, 68(3), pp. 118-126.
[34] Hallgren M. (1996) Punching Shear Capacity of Reinforced High Strength Concrete Slabs [doctoral thesis], Stockholm: Royal Institute of Technology in Stockholm (KTH).
[35] Ramdane K. E. (1996) Punching shear of high performance concrete slabs, Proceedings of the fourth international symposium on utilization of high-strength/high performance concrete, (Vol. 3, pp. 1015-1026).
[36] Li K. & Lun K. (2000) Influence of size on punching shear strength of concrete slabs, MEng dissertation, Department of Civil Engineering, and Applied Mechanics, McGill University, Montréal, QC, Canada, pp. 26-44
[37] Guandalini S. & Muttoni A. (2004) symmetrical punching tests on slabs without transverse reinforcement, Test Report, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland, 85 (in French)
[38] Sundquist H. & Kinnunen S. (2004) The effect of column head and drop panels on the punching capacity of flat slabs, Bulletin No. 82. Department of Civil and Architectural Engineering. Royal Institute of Technology. Stockholm, 24 (in Swedish).
[39] Birkle G. & Dilger W. H. (2008) Influence of slab thickness on punching shear strength, ACI Structural Journal, 105(2), 180.
[40] Marzouk, H., and M. Hossin. (2007) Crack analysis of reinforced concrete two-way slabs. Research Report, 2007.
[41] Marzouk R. & Rizk E. (2009) Punching analysis of reinforced concrete two-way slabs. Research Report RCS01, Faculty of Engineering and Applied Science, Memorial University of Newfoundland, St. John’s, Newfoundland, Canada.