اثر افزایش ولتاژ و تنظیم pH در بهبود کارایی روش الکتروکینتیک برای حذف کروزین از خاک آلوده

نوع مقاله : پژوهشی اصیل (کامل)

نویسندگان
1 دانش آموخته دانشگاه تربیت مدرس، دانشکده فنی و مهندسی، بخش معدن
2 هیأت علمی دانشگاه تربیت مدرس، دانشکده فنی و مهندسی، بخش معدن
3 دانشگاه تربیت مدرس، دانشکده فنی و مهندسی، بخش معدن
چکیده
آلوده شدن خاک به ترکیبات هیدروکربنی در نتیجه حوادث گوناگون و نشت ترکیبات هیدروکربنی به محیط متخلخل جامد خاک اثرات اجتناب ناپذیری در محیط زیست از خود به جای خواهد گذاشت. روش­های پاکسازی متعددی برای خاک آلوده به ترکیبات هیدروکربنی وجود دارد، الکتروکینتیک یکی از روش­های موثر پاکسازی و مقرون به­صرفه از نظر هزینه و زمان برای محیط­های جامد و متخلخل ریز­دانه که ظرفیت جذب بالای رطوبت و همچنین آلاینده­های آلی را به خود دارند محسوب می­گردد. از جمله ترکیبات هیدروکربنی هیدروفوب با خصوصیات فیزیکی و شیمیایی زیان آور بر اکوسیستم و جذب بالا بر محیط آب و خاک به کروزین می­توان اشاره نمود. این ماده در ترکیب خود دارای هیدروکربن­های متفاوت بوده و هر ملکول آن به طور متوسط دارای 10 تا 16 اتم کربن است. پایداری و ماندگاری یکی از ویژگی­های بارز این ترکیب در اکوسیستم از جمله محیط خاک می­باشد. خاک مورد استفاده در این تحقیق از جنس خاک کائولینیت ریزدانه، با توجه به ماهیت و اثربخشی روش الکتروکینتیک برای محیط متخلخل استفاده شد. در تحقیق حاضر به منظور دستیابی به زمان بهینه، نوع محلول الکترولیت و عامل بهبود دهنده مناسب برای تلفیق با روش الکتروکینتیک 5 آزمایش شامل استفاده از روش الکتروکینتیک طی مدت زمان 5 و 7 روز، روش الکتروکینتیک در مدت 7 روز به همراه دو نوع محلول الکترولیت متفاوت و عامل­های بهبود دهنده کنترل pH و افزایش ولتاژ با تلفیق روش الکتروکینتیک در نظر گرفته شدند. درصد حذف کروزین با توجه به مدت زمان 5 و7 روز با استفاده از محلول الکترولیت نیترات پتاسیم به ترتیب برابر 24/47 و 50 بود. با افزایش 9/2 برابری جریان الکترواسمز در مدت زمان 48 ساعت از 5 به 7 روز راندمان حذف کروزین 76/2 درصد افزایش پیدا کرد. استفاده از آب مقطر به عنوان محلول الکترولیت در مدت 7 روز راندمان حذف را به 02/33 درصد کاهش داد. اما هنگام استفاده از عامل­های بهبود دهنده کنترل pH و افزایش ولتاژ تا 2 ولت بر هر سانتی متر راندمان حذف کروزین به ترتیب با جریان الکترواسمز 372 و 452 میلی­لیتر به 69/47 و 43/61 درصد افزایش پیدا نمود. لذا بهترین راندمان حذف کروزین مروبط به استفاده از روش الکتروکینتیک با تلفیق عامل بهبود دهنده افزایش ولتاژ و استفاده از محلول الکترولیت نیترات پتاسیم طی مدت زمان 7 روز بود.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Effect of Increased Voltage and pH Adjustment to Improve the Efficiency of the Electrokinetic Method to Remove Kerosene from Contaminated Soil

نویسندگان English

Ali Barati Fardin 1
Ahmad Khodadadi 2
Ahmad Jamshidi-Zanjani 3
1 Master of mining and environment
2 Professor of mineral proceessing, Tarbiat Modares University
3 Department of Mining, Faculty of Engineering, Tarbiat Modares University
چکیده English

Every year with the expansion and development of industrial and mining activities, millions of tonnes of toxic waste are produced throughout the world. Soil contamination by organic material as a result of various incidents and the leakage of organic compounds into the soil solid porous media will have an adverse effect on the environment. There are several methods for soil remediation contaminated with hydrocarbon compounds. Electrokinetic is one of the effective remediation which includes three main mechanisms for remediation, electroosmotic flow, ionic migration and electrophoresis. Electrokinetic is suitable in terms of cost and time for solid and porous fine-grained environment media that have high adsorption capacity of moisture and also organic pollutants. Kerosene is considered as one of the hydrophobic organic compounds with harmful physical and chemical properties to ecosystems and high adsorption onto the water and soil media. It has different hydrocarbons in its composition, each molecule having an average of 10 to 16 carbon atoms. It is so durable in the ecosystem, including the soil environment. The soil used in this study was fine-grained kaolinite due to the nature and effectiveness of the electrokinetic method for porous media. In this study, five series of experiments were carried out using electrokinetic method and its combination with improved techniques. The parameters including cumulative electroosmotic flow, electrical current intensity, reservoir and soil pH variation and residual kerosene concentrations in soil were studied. The highest electrical current devoted to increased voltage and pH control tests with 48 and 94 mA respectively for a time interval of 80 to 90 hours after the start of the tests were observed. The higher electric current intensity causes faster migration of ionic species to the opposite-electrode, resulting in greater electroosmotic flow transportation. In the present study, the removal percentage of kerosene from kaolinite soil through the different electrokinetic techniques including changing the electrolyte solution (nitrate potassium and tap water), increasing the-voltage (2 volts per cm of soil), and pH control over 5 and 7 days were investigated. Results revealed, using potassium nitrate as electrolyte solution, the the removal efficiency of kerosene was 47.24% and 50%, respectively, according to the remediation time of 5 and 7 days. With an increase of 2.9 times in the electroosmotic flow over a period of 48 hours from 5 to 7 days, the removal efficiency of the kerosene increased by 2.76%. Using distilled water as electrolyte solution despite the volume of 555 milliliters of electroosmotic flow, kerosene removal efficiency decreased to 33.02% in 7 days. The percentage of kerosene removal by pH control and increased voltage up to 2 v/cm, respectively with electroosmotic flow of 372 and 452 was 47.69 and 61.43%. Hence, a higher volume of electroosmotic flow represents a greater removal of kerosene in the soil. According to the obtained results, the best removal efficiency of kerosene (inspite of higher electroosmotic flow in tests with no enhancement technique) was due to the use of electrokinetic method by combining the higher voltage enhancement technique and the use of potassium nitrate electrolyte as solution over a period of 7 days.

کلیدواژه‌ها English

Electrokinetics
pH control
Increased Voltage
Kerosene
Improvement factors
[1] Trellu, C., Mousset, E., Pechaud, Y., Huguenot, D., Van Hullebusch, E.D., Esposito, G. and Oturan, M.A., 2016. Removal of hydrophobic organic pollutants from soil washing/flushing solutions: a critical review. Journal of Hazardous Materials, 306, pp.149-174.
[2] Panizza, M. and Cerisola, G., 2009. Direct and mediated anodic oxidation of organic pollutants. Chemical reviews, 109(12), pp.6541-6569.
[3] da Silva, E.B.S., de Lima, M.D., Oliveira, M.M., Costa, E.C.T.D.A., da Silva, D.R. and Martínez-Huitle, C.A., 2017. Electrokinetic Treatment of Polluted Soil with Petroleum Coupled to an Advanced Oxidation Process for Remediation of Its Effluent. Int. J. Electrochem. Sci, 12, pp.1247-1262.
[4] Huang, D., Xu, Q., Cheng, J., Lu, X. and Zhang, H., 2012. Electrokinetic remediation and its combined technologies for removal of organic pollutants from contaminated soils. Int. J. Electrochem. Sci, 7(5), pp.4528-4544.
[5] Yeung, A.T., 2010. Remediation technologies for contaminated sites. In Advances in environmental geotechnics (pp. 328-369). Springer, Berlin, Heidelberg.
[6] Sharma, H.D. and Reddy, K.R., 2004. Geoenvironmental engineering: site remediation, waste containment, and emerging waste management technologies. John Wiley & Sons.
[7] Marshak, S., 2015. Earth: Portrait of a Planet: 5th International Student Edition. WW Norton & Company.
[8] Shenbagavalli, S. and Mahimairaja, S., 2010. Electro kinetic remediation of contaminated habitats. African Journal of Environmental Science and Technology, 4(13), pp.930-935.
[9] Virkutyte, J., Sillanpää, M. and Latostenmaa, P., 2002. Electrokinetic soil remediation—critical overview. Science of the Total Environment, 289(1-3), pp.97-121.
[10] Jamshidi-Zanjani, A. and Khodadadi Darban, A., 2017. A review on enhancement techniques of electrokinetic soil remediation. Pollution, 3(1), pp.157-166.
[11] Mao, X., X. Yang, and H. Qin., 2018. Mechanisms and Influencing Factors of Electro-Kinetic Enhanced Phytoextraction for the Recovery of Metal-Polluted Soils. Environ Anal Toxicol, Vol 8.
[12] Acar, Y.B., Gale, R.J., Alshawabkeh, A.N., Marks, R.E., Puppala, S., Bricka, M. and Parker, R., 1995. Electrokinetic remediation: basics and technology status. Journal of hazardous materials, 40(2), pp.117-137.
[13] Acar, Y.B. and Alshawabkeh, A.N., 1993. Principles of electrokinetic remediation. Environmental science & technology, 27(13), pp.2638-2647.
[14] Kim, B.K., Baek, K., Ko, S.H. and Yang, J.W., 2011. Research and field experiences on electrokinetic remediation in South Korea. Separation and Purification Technology, 79(2), pp.116-123.
[15] Korolev, V.A., 2006, September. Electrokinetic remediation of a contaminated land in cities. In Proceedings of the 10th IAEG Congress,“Engineering Geology for Tomorrow’s Cities (pp. 6-10).
[16] Doering, F., Doering, N., Iovenitti, J.L., Hill, D.G. and McIlvride, W.A., 2001. Electrochemical remediation technologies for soil, sediment and ground water. innovative strategies for the remediation of chlorinated solvents and DNAPLs in the subsurface, San Diego, CA.
[17] Reddy, K.R., Darko-Kagya, K. and Al-Hamdan, A.Z., 2011. Electrokinetic remediation of pentachlorophenol contaminated clay soil. Water, Air, & Soil Pollution, 221(1-4), pp.35-44.
[18] Park, S.W., Lee, J.Y., Yang, J.S., Kim, K.J. and Baek, K., 2009. Electrokinetic remediation of contaminated soil with waste-lubricant oils and zinc. Journal of Hazardous Materials, 169(1-3), pp.1168-1172.
[19] Zanjani, A.J., Saeedi, M. and Weng, C.H., 2012. An Electrokinetic Process Coupled Activated Carbon Barrier for Nickel Removal from Kaolinite. EnvironmentAsia, 5(2).
[20] Mulligan, C.N., Yong, R.N. and Gibbs, B.F., 2001. Remediation technologies for metal-contaminated soils and groundwater: an evaluation. Engineering geology, 60(1-4), pp.193-207.
[21] Moghadam, M.J., Moayedi, H., Sadeghi, M.M. and Hajiannia, A., 2016. A review of combinations of electrokinetic applications. Environmental geochemistry and health, 38(6), pp.1217-1227.
[22] Cameselle, C., Gouveia, S., Akretche, D.E. and Belhadj, B., 2013. Advances in electrokinetic remediation for the removal of organic contaminants in soils. In Organic Pollutants-Monitoring, Risk and Treatment. InTech.
[23] Saichek, R.E. and Reddy, K.R., 2003. Effect of pH control at the anode for the electrokinetic removal of phenanthrene from kaolin soil. Chemosphere, 51(4), pp.273-287.
[24] Lee, J.Y., Kwon, T.S., Park, J.Y., Choi, S., Kim, E.J., Lee, H.U. and Lee, Y.C., 2016. Electrokinetic (EK) removal of soil co-contaminated with petroleum oils and heavy metals in three-dimensional (3D) small-scale reactor. Process Safety and Environmental Protection, 99, pp.186-193.
[25] Oonnittan, A., Isosaari, P. and Sillanpää, M., 2010. Oxidant availability in soil and its effect on HCB removal during electrokinetic Fenton process. Separation and Purification Technology, 76(2), pp.146-150.
[26] Alcántara, M.T., Gómez, J., Pazos, M. and Sanromán, M.A., 2012. Electrokinetic remediation of lead and phenanthrene polluted soils. Geoderma, 173, pp.128-133.
[27] Jeon, C.S., Yang, J.S., Kim, K.J. and Baek, K., 2010. Electrokinetic removal of petroleum hydrocarbon from residual clayey soil following a washing process. CLEAN–Soil, Air, Water, 38(2), pp.189-193.
[28] Lukman, S., Essa, M.H., Mu'azu, N.D. and Bukhari, A., 2013. Coupled electrokinetics-adsorption technique for simultaneous removal of heavy metals and organics from saline-sodic soil. The Scientific World Journal, 2013.
[29] Kerosene MSDS/Netherlands. 2015.
[30] EPA Method 3540c, SOXHLET EXTRACTION. 1996.
[31] Lee, H.H. and Yang, J.W., 2000. A new method to control electrolytes pH by circulation system in electrokinetic soil remediation. Journal of Hazardous Materials, 77(1-3), pp.227-240.
[32] Kebria, D.Y., Taghizadeh, M., Camacho, J.V. and Latifi, N., 2016. Remediation of PCE contaminated clay soil by coupling electrokinetics with zero-valent iron permeable reactive barrier. Environmental Earth Sciences, 75(8), p.699.
[33] Asadollahfardi, G., Nasrollahi, M., Rezaee, M. and Khodadadi Darban, A., 2017. Nickel removal from low permeable kaolin soil under unenhanced and EDTA-enhanced electrokinetic process. Advances in Environmental Research, 2, pp.147-158.