قابلیت نانوکامپوزیت جدید بیوچار/ZnO/SnO2 در حذف رنگزای اسید اورانژ 7 در محلول آبی

نوع مقاله : پژوهشی اصیل (کامل)

نویسندگان
دانشگاه تربیت مدرس
چکیده
هدف از این پژوهش بررسی حذف رنگزای اسید اورانژ 7 از محلول آبی با استفاده از نانوکامپوزیت سه‌جزیی جدید بیوچار/ZnO/SnO2 بود. در این مطالعه تجربی تاثیر پارامترهای درصد وزنی ZnO، درصد وزنی SnO2، pH، غلظت رنگزا و غلظت نانوکامپوزیت به روش تک فاکتوریل بررسی و شرایط بهینه تعیین شد. بر اساس نتایج حاصل، بیشترین بازده حذف رنگزا برابر با 92/96% و در شرایط بهینه نسبت وزنی 20%(به کل نانوکامپوزیت) برای ZnO ، نسبت وزنی 5% برای SnO2 (به کل نانوکامپوزیت)، 1/7pH= ، غلظت رنگزا mg/L 250 و دوز نانوکامپوزیت برابر با g/L 5/0، درمدت 60 دقیقه بدست آمد. یکی از نکات قابل توجه برای نانوکامپوزیت ساخته شده قدرت بالای آن در حذف رنگزا در مدت زمان بسیار کم بود بطوریکه بعد از گذشت 2 دقیقه از شروع آزمایش رنگزا (حدود 86%) حذف شد و توانایی کاهش COD به میزان 27/77% و TOC به میزان 6/66% پس از 2 ساعت را داشت. هم‌چنین نانوکامپوزیت تا مرتبه چهارم استفاده شد که میزان کاهش بازده برای مرتبه‌های اول تا چهارم کمتر از 10% بدست آمد. بر اساس داده‌های آزمایشگاهی، سینتیک واکنش‌های انجام شده از مدل نمایی دوگانه تبعیت کرده و مدل ایزوترمی لانگمویر نیز بیشترین تطابق را با داده‌های مشاهده شده داشت. هم‌چنین بر اساس نتایج مطالعات ترمودینامیکی، جذب رنگزا بر روی سطح نانوکامپوزیت، از نوع فیزیکی بود.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Capability of new Biochar/ZnO/SnO2 nanocomposite with high ability in removal of acid orange 7 solution

نویسندگان English

Sajjad Ataee
Bita Ayati
Tarbiat Modares Univ.
چکیده English

The aim of this study was to investigate the removal of acid orange 7 from aqueous solution using a new triple nanocomposite biochar/ZnO/SnO2. In this experimental study, weight percentages of ZnO, weight percentages of SnO2, pH, dye concentration and nanocomposite dosage as effective parameters on removal of acid orange 7 using one factorial method were analyzed. The maximum dye removal efficiency of 96.92% obtained at optimum conditions, 20% weight ratio for ZnO, 5% weight ratio for SnO2, pH = 7.1, 250 ppm dye concentration, 0.5 g/L nanocomposite dose after 60 minute. One of the highlights of the nanocomposite was its high power to remove dyes in a very short time. As after 2 minutes of testing, most of the dye (about 86%) was removed. It was also observed that the nanocomposite had the ability to reduce COD by 77.27% and TOC by 66.6% after 2 hours. Also, nanocomposite was reused until the fourth time, when the efficiency reduction for the first to fourth times was less than 10%. According to the results, the kinetics of the reactions for the nanocomposite were in accordance with the double exponential model and the Langmuir isotherm model was the most consistent with the observed data. Also, according to the thermodynamic studies, the dye adsorption on the surface of the nanocomposite was physical.

کلیدواژه‌ها English

Biochar
Nanocomposite
Acid orange 7
ZnO
SnO2
[1] Ghalebizadeh M., Ayati B., Solar Photoelectrocatalytic Degradation of Acid Orange 7 with ZnO/TiO2 Nanocomposite Coated on Stainless Steel Electrode, Process Safety and Environmental Protection Journal, Vol. 103, pp. 192-202, Sept. 2016, doi: 10.1016/j.psep.2016.07.009
[2] Zhang, Z. Z., Cheng, Y. F., Bai, Y. H., Xu, J. J., Shi, Z. J., Zhang, Q. Q., & Jin, R. C. (2018). Transient disturbance of engineered ZnO nanoparticles enhances the resistance and resilience of anammox process in wastewater treatment. Science of the Total.
[3] Begum, S., & Ahmaruzzaman, M. (2018). Biogenic synthesis of SnO2/activated carbon nanocomposite and its application as photocatalyst in the degradation of naproxen. Applied Surface Science, 449, 780-789.
[4] Zheng, X., Huang, M., You, Y., Fu, X., Liu, Y., & Wen, J. (2018). One-pot synthesis of sandwich-like MgO@ Carbon with enhanced sorption capacity of organic dye. Chemical Engineering Journal, 334, 1399-1409.
[5] Johannes, Lehmann., Stephen, Joseph., (2009), Biochar for Environmental Management, Science and Technology.
[6] Inyang, M., Gao, B., Zimmerman, A., Zhang, M., & Chen, H. (2014). Synthesis, characterization, and dye sorption ability of carbon nanotube–biochar nanocomposites. Chemical Engineering Journal, 236, 39-46.
[7] Khataee, A., Gholami, P., Kalderis, D., Pachatouridou, E., & Konsolakis, M. (2018). Preparation of novel CeO2-biochar nanocomposite for sonocatalytic degradation of a textile dye. Ultrasonics Sonochemistry, Vol.41, pp. 503-513.
[8] Arabyarmohammadi, H., Darban, A. K., Abdollahy, M., Yong, R., Ayati, B., Zirakjou, A., & van der Zee, S. E. (2018). Utilization of a novel chitosan/clay/Biochar Nanobiocomposite for immobilization of heavy metals in acid soil environment. Journal of Polymers and the Environment, 26(5), 2107-2119.
[9] Darvishi Cheshmeh Soltani, R., Rezaee, A., & Khataee, A. (2013). Combination of carbon black–ZnO/UV process with an electrochemical process equipped with a carbon black–PTFE-coated gas-diffusion cathode for removal of a textile dye. Industrial & Engineering Chemistry Research, 52(39), 14133-14142.
[10] Singh, J., Kumari, P., & Basu, S. (2019). Degradation of toxic industrial dyes using SnO2/g-C3N4 nanocomposites: Role of mass ratio on photocatalytic activity. Journal of Photochemistry and Photobiology A: Chemistry, 371, 136-143
[11] Ferreira, C. S., Santos, P. L., Bonacin, J. A., Passos, R. R., & Pocrifka, L. A. (2015). Rice Husk Reuse in the Preparation of SnO2/SiO2 Nanocomposite. Materials Research, 18(3), 639-643.
[12] Fan, S., Wang, Y., Wang, Z., Tang, J., Tang, J., & Li, X. (2017). Removal of methylene blue from aqueous solution by sewage sludge-derived biochar: Adsorption kinetics, equilibrium, thermodynamics and mechanism. Journal of Environmental Chemical Engineering, 5(1), 601-611.
[13] Lin, Y. C., Ho, S. H., Zhou, Y., & Ren, N. Q. (2018). Highly efficient adsorption of dyes by biochar derived from pigments-extracted macroalgae pyrolyzed at different temperature. Bioresource technology, 259, 104-110.
[14] Kelm, M. A. P., da Silva Júnior, M. J., de Barros Holanda, S. H., de Araujo, C. M. B., de Assis Filho, R. B., Freitas, E. J., ... & da Motta Sobrinho, M. A. (2019). Removal of azo dye from water via adsorption on biochar produced by the gasification of wood wastes. Environmental Science and Pollution Research, 26(28), 28558-28573.
[15] Zhang, P., O’Connor, D., Wang, Y., Jiang, L., Xia, T., Wang, L., ... & Hou, D. (2020). A green biochar/iron oxide composite for methylene blue removal. Journal of hazardous materials, 384, 121286.
[16] Federation, W. E., & American Public Health Association. (2005). Standard methods for the examination of water and wastewater. American Public Health Association (APHA): Washington, DC, USA.
[17] Damodar, R. A., You, S. J., & Ou, S. H. (2010). Coupling of membrane separation with photocatalytic slurry reactor for advanced dye wastewater treatment. Separation and Purification Technology, 76(1), 64-71.
[18] Darezereshki, E., Tavakoli, F., Bakhtiari, F., Vakylabad, A. B., & Ranjbar, M. (2014). Innovative impregnation process for production of γ-Fe2O3–activated carbon nanocomposite. Materials Science in Semiconductor Processing, 27, 56-62.
[19] Ibupoto, A. S., Qureshi, U. A., Ahmed, F., Khatri, Z., Khatri, M., Maqsood, M., ... & Kim, I. S. (2018). Reusable carbon nanofibers for efficient removal of methylene blue from aqueous solution. Chemical Engineering Research and Design, 136, 744-752.
[20] Siyasukh, A., Chimupala, Y., & Tonanon, N. (2018). Preparation of magnetic hierarchical porous carbon spheres with graphitic features for high methyl orange adsorption capacity. Carbon, 134, 207-221.
[21] Duman, O., Tunc, S., & Polat, T. G. (2015). Adsorptive removal of triarylmethane dye (Basic Red 9) from aqueous solution by sepiolite as effective and low-cost adsorbent. Microporous and Mesoporous Materials, 210, 176-184.
[22] Dada, A. O., Olalekan, A. P., Olatunya, A. M., & Dada, O. J. I. J. C. (2012). Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherms studies of equilibrium sorption of Zn2+ unto phosphoric acid modified rice husk. IOSR Journal of Applied Chemistry, 3(1), 38-45.
[23] Rahmati, M. M., Rabbani, P., Abdolali, A., & Keshtkar, A. R. (2011). Kinetics and equilibrium studies on biosorption of cadmium, lead, and nickel ions from aqueous solutions by intact and chemically modified brown algae. Journal of Hazardous Materials, 185(1), 401-407.
[24] Sun, X. F., Wang, S. G., Liu, X. W., Gong, W. X., Bao, N., & Gao, B. Y. (2008). Competitive biosorption of zinc (II) and cobalt (II) in single-and binary-metal systems by aerobic granules. Journal of Colloid and Interface Science, 324(1-2), 1-8.
[25] Volesky, B. (2003). Biosorption process simulation tools. Hydrometallurgy, 71(1-2), 179-190.
[26] Yari, S., Abbasizadeh, S., Mousavi, S. E., Moghaddam, M. S., & Moghaddam, A. Z. (2015). Adsorption of Pb (II) and Cu (II) ions from aqueous solution by an electrospun CeO2 nanofiber adsorbent functionalized with mercapto groups. Process Safety and Environmental Protection, 94, 159-171.
[27] Isah, U., Abdulraheem, G., Bala, S., Muhammad, S., & Abdullahi, M. (2015). Kinetics, equilibrium and thermodynamics studies of CI Reactive Blue 19 dye adsorption on coconut shell based activated carbon. International Biodeterioration & Biodegradation, 102, 265-273.
[28] Lin, J., Luo, Z., Liu, J., & Li, P. (2018). Photocatalytic degradation of methylene blue in aqueous solution by using ZnO-SnO2 nanocomposites. Materials Science in Semiconductor Processing, 87, 24-31.
[29] Han, K., Peng, X. L., Li, F., & Yao, M. M. (2018). SnO2 composite films for enhanced photocatalytic activities. Catalysts, 8(10), 453.
[30] Pavia, D. L., Lampman, G. M., Kriz, G. S., & Vyvyan, J. A. (2014). Introduction to spectroscopy. Cengage Learning.
[31] Yin, D., Zhang, L., Liu, B., & Wu, M. (2012). Ag/ZnO-C nanocomposite-preparation and photocatalytic properties. Journal of Nanoscience and Nanotechnology, 12(3), 2248-2253.
[32] Liu, M., Chen, Q., Lu, K., Huang, W., Lü, Z., Zhou, C., ... & Gao, C. (2017). High efficient removal of dyes from aqueous solution through nanofiltration using diethanolamine-modified polyamide thin-film composite membrane. Separationand Purification Technology, Vol. 173, pp.135-143.
[33] Chandraboss, V. L., Kamalakkannan, J., Prabha, S., & Senthilvelan, S. (2015). An efficient removal of methyl violet from aqueous solution by an AC-Bi/ZnO nanocomposite material. RSC Advances, 5(33), 25857-25869.
[34] Sobana, N., Krishnakumar, B., & Swaminathan, M. (2013). Synergism and effect of operational parameters on solar photocatalytic degradation of an azo dye (Direct Yellow 4) using activated carbon-loaded zinc oxide. Materials Science in Semiconductor Processing, 16(3), 1046-1051
[35] Jung, G., & Kim, H. I. (2014). Synthesis and photocatalytic performance of PVA/TiO2/graphene‐MWCNT nanocomposites for dye removal. Journal of Applied Polymer Science, 131(17).
[36] Alkan, M., Çelikçapa, S., Demirbaş, Ö., & Doğan, M. (2005). Removal of reactive blue 221 and acid blue 62 anionic dyes from aqueous solutions by sepiolite. Dyes and Pigments, 65(3), 251-259.
[37] Fang, R., Cheng, X., & Xu, X. (2010). Synthesis of lignin-base cationic flocculant and its application in removing anionic azo-dyes from simulated wastewater. Bioresource Technology, 101(19), 7323-7329.
[38] Alouani, M. E. L., Alehyen, S., Achouri, M. E. L., & Taibi, M. (2018). Removal of cationic dye-methylene blue-from aqueous solution by adsorption on fly ash-based geopolymer. J Mater Environ Sci, 9(1), 32-46.
[39] Ma, J., Wang, K., Li, L., Zhang, T., Kong, Y., & Komarneni, S. (2015). Visible-light photocatalytic decolorization of Orange II on Cu2O/ZnO nanocomposites. Ceramics International, 41(2), 2050-2056.
[40] Aguedal, H., Iddou, A., Aziz, A., Shishkin, A., Ločs, J., & Juhna, T. (2019). Effect of thermal regeneration of diatomite adsorbent on its efficacy for removal of dye from water. International Journal of Environmental Science and Technology, 16(1), 113-124.
[41] Znad, H., Abbas, K., Hena, S., & Awual, M. R. (2018). Synthesis a novel multilamellar mesoporous TiO2/ZSM-5 for photo-catalytic degradation of methyl orange dye in aqueous media. Journal of Environmental Chemical Engineering, 6(1), 218-227.
[42] Zhou, M., Oturan, M. A., & Sires, I. (2018). Electro-Fenton Process. Springer.
[43] Li, Y., Liu, F., Xia, B., Du, Q., Zhang, P., Wang, D., ... & Xia, Y. (2010). Removal of copper from aqueous solution by carbon nanotube/calcium alginate composites. Journal of Hazardous Materials, 177(1-3), 876-880.
[44] W John Thomas, F., & Crittenden, B. (1998). Adsorption technology and design. Butterworth-Heinemann. Environment, 622, 402-409.
[45] Yusuf, M., Khan, M. A., Otero, M., Abdullah, E. C., Hosomi, M., Terada, A., & Riya, S. (2017). Synthesis of CTAB intercalated graphene and its application for the adsorption of AR265 and AO7 dyes from water. Journal of Colloid and Interface Science, 493, 51-61.
[46] Jung, K. W., Choi, B. H., Hwang, M. J., Jeong, T. U., & Ahn, K. H. (2016). Fabrication of granular activated carbons derived from spent coffee grounds by entrapment in calcium alginate beads for adsorption of acid orange 7 and methylene blue. Bioresource Technology, 219, 185-195.
[47] Xiong, S., Kong, L., Zhong, Z., & Wang, Y. (2016). Dye adsorption on zinc oxide nanoparticulates atomic‐layer‐deposited on polytetrafluoroethylene membranes. AIChE Journal, 62(11), 3982-3991.
[48] Li, T., Liu, Y., Wang, S., Zeng, G., Zheng, B., Wang, H., ... & Zeng, X. (2015). Synthesis and adsorption application of amine shield-introduced-released porous chitosan hydrogel beads for removal of acid orange 7 from aqueous solutions. RSC Advances, 5(77), 62778-62787.
[49] Khani, M. H. (2011). Uranium biosorption by Padina sp. algae biomass: Kinetics and thermodynamics. Environmental Science and Pollution Research, 18(9), 1593.
[50] Pahlavanzadeh, H., Keshtkar, A. R., Safdari, J., & Abadi, Z. (2010). Biosorption of nickel (II) from aqueous solution by brown algae: Equilibrium, dynamic and thermodynamic studies. Journal of Hazardous Materials, 175(1-3), 304-310.