بهینه سازی طرح اختلاط بتن خودتراکم الیافی حاوی پلی پروپلین با استفاده از الگوریتم های فرا ابتکاری ژنتیک و جستجوی کلاغ

نوع مقاله : پژوهشی اصیل (کامل)

نویسندگان
1 استادیار گروه عمران موسسه آموزش عالی پردیسان فریدونکنار
2 کارشناس ارشد موسسه آموزش عالی طبری بابل
3 استادیار گروه عمران دانشگاه صنعتی نوشیروانی بابل
4 دانشجوی کارشناسی ارشد عمران موسسه آموزش عالی طبری بابل
چکیده
در سالیان اخیر استفاده از بتن محتوی الیاف بعنوان یک ماده­ی ساختمانی مهم و با خواص مکانیکی مناسب جهت ساخت و ساز انواع سازه­ها استفاده می­شود. هدف اصلی در این تحقیق، طراحی بتن توانمند خودتراکم الیافی با استفاده از الگوریتم­های فرا ابتکاری با پیاده­سازی در نرم افزار متلب می­باشد. برای بهینه­سازی مبتنی بر راهکار­های فرا ابتکاری، الگوریتم جستجوی کلاغ (CSA) و الگوریتم ژنتیک (GA) به عنوان راهکارپردازشی محاسباتی توسعه داده داده شده است. برای این منظور، 67 طرح اختلاط بتن خودتراکم الیافی شامل آب (2/137 – 195 کیلوگرم بر مترمکعب)، سیمان (5/325 – 520 کیلوگرم بر مترمکعب)، درشت دانه (722 – 920 کیلوگرم بر مترمکعب)، ریزدانه (9/804 – 960 کیلوگرم بر مترمکعب)، نانوسیلیس (0 – 6/49 کیلوگرم بر مترمکعب)، درصد حجمی الیاف (0 – 9/0 درصد)، پودرسنگ آهک (0 – 9/288 کیلوگرم بر مترمکعب) و فوق روان کننده (75/1 – 5/10 کیلوگرم بر مترمکعب) برای طراحی مخلوط بهینه مورد استفاده قرار گرفت. در این مطالعه برای فرموله شدن مسئله بهینه­سازی، تابع هدف مقاومت فشاری بتن برپایه روش رگرسیون چندگانه خطی توسعه داده شد. همچنین قید­های بررسی شده در این مطالعه نسبت مقادیر طرح اختلاط و حجم مطلق مقادیر طرح اختلاط برای طراحی مخلوطی با مقاومت بهینه و مقرون به صرفه به عنوان محدودیت­های تکنولوژیکی از فاکتور­های آزمایشگاهی تولید بتن مورد توجه قرار گرفته است. پیاده­سازی الگوریتمیک روش­های فرا ابتکاری در محدوده 30 – 7/88 مگاپاسکال تا رسیدن به مخلوط با مقادیر بهینه ادامه پیدا کرده و در نهایت 5 نمونه از مخلوط بهینه توسعه داده شده با استفاده از الگوریتم­های CSA و GA جهت بررسی قابلیت و بهره­وری الگوریتم­ها گزارش گردید. نتایج ارائه شده در این مطالعه نشان داده است که عملکرد الگوریتم CSA با محدوده خطای میانگین 38/3 – 49/14 درصد در مقایسه با الگوریتم GA با محدوده خطای میانگین 95/7 – 52/15 نتایج قابل توجه در دقت و همگرایی جواب­ها ارائه نموده است. از این­رو می­توان به این نتیجه رسید که الگوریتم­های مورد استفاده به عنوان ابزار قابل اطمینان در حل مسایل بهینه­سازی در مسایل مهندسی بویژه تکنولوژی بتن قابل توجه می­باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Optimization of Mixture Proportions of Self-compacted Fiber Reinforced Concrete incorporating Polypropylene using Genetic and Crow search Algorithms

نویسندگان English

MOHAMMAD JAVAD TAHERI AMIRI 1
Ali Ashrafian 2
Javad Berenjian 3
Fatemeh Asghari Tilaki 4
1 Assistant Professor, Department of Civil Engineering, Higher Education Institute of Pardisan
2 MSc in Civil Engineering, Tabari University of Babol
3 Assistant professor, Babol University of Technology
4 MSc student in Civil Engineering, Tabari University of Babol
چکیده English

The utilization of concrete Incorporating with fibers is one of the proper issues of construction industry in last years. The main focus of this research to design a high performance self-compacted fiber reinforced concrete (SCFRC) by using an evolutionary algorithm, which is implemented in MATLAB. Crow Search Algorithm (CSA) and Genetic Algorithm (GA) are statistical ways which are developed by optimization based meta-heuristic solutions. A total of 67 concrete mixtures were considered by varying the levels of key factors affecting concrete strength of concrete, namely, water content (137.2-195 kg/m3), cement content (325.5-520 kg/m3), coarse aggregate content (722-920 kg/m3), fine aggregate content (804.9-960 kg/m3), nano silica content (0-49.6 kg/m3),percentage of volumetric of fibers (0-0.9 %), lime stone powder content (0-288.9 kg/m3) and superplasticizer content (1.75-10.5 kg/m3) were developed to design optimized mixture proportions. The objective function called maximizing concrete strength was formulated as an optimization problem on the basis of Multiple Linear Regression (MLR) method. The constrains including ratio of mixture proportions and absolute volume of mixture design were utilized to obtain an optimal-strength and cost-effective design. The concrete technological constraints were identified as the factors of experimental design for concrete production. The evolutionary implementation of results reached incorporating mixture proportions having strengths in range of 30 - 88.7 MPa. Five numerical examples for optimum mixture design of SCFRC were considered to evaluate the capability and efficiency of CSA and GA algorithm. These results were compared and concluded that CSA (3.38-14.49 % of mean error) performed better than GA (7.95-15.52 % of mean error) for this application. Also, the proposed evolutionary CSA and GA algorithms are found to be reliable and robustness tools to solve and optimize engineering and concrete technological problem.

کلیدواژه‌ها English

Self-Compacted Fiber Reinforced Concrete
Polypropylene
Optimization
genetic algorithm
Crow Search Algorithm
1- AzariJafari, H., Amiri, M.J.T., Ashrafian, A., Rasekh, H., Barforooshi, M.J. and Berenjian, J., 2019. Ternary blended cement: An eco-friendly alternative to improve resistivity of high-performance self-consolidating concrete against elevated temperature. Journal of Cleaner Production, 223, pp.575-586.
2- Beigi, M.H., Berenjian, J., Omran, O.L., Nik, A.S. and Nikbin, I.M., 2013. An experimental survey on combined effects of fibers and nanosilica on the mechanical, rheological, and durability properties of self-compacting concrete. Materials & Design, 50, pp.1019-1029.
3- Nik, A.S. and Omran, O.L., 2013. Estimation of compressive strength of self-compacted concrete with fibers consisting nano-SiO2 using ultrasonic pulse velocity. Construction and Building Materials, 44, pp.654-662.


4- Supit, S.W.M. and Shaikh, F.U.A., 2015. Durability properties of high volume fly ash concrete containing nano-silica. Materials and structures, 48(8), pp.2431-2445.
5- Amiri, M.J.T., Haghighi, F., Eshtehardian, E., Abessi, O., 2017. Optimization of time, cost and quality in critical chain method using simulated annealing. International Journal of Engineering-Transactions B: Applications, 30 (5), pp. 627-635.
6- Amiri, M.J.T., Haghighi, F., Eshtehardian, E., Abessi, O., 2018. Multi-project time-cost optimization in critical chain with resource constraint. KSCE Journal of Civil Engineering, 22(10), pp. 3738-3752.
7- Taheri Amiri, M.J., Haghighi, F., Eshtehardian, E., Hematian, M., Kordi, H., 2017. Optimization of Time and Costs in Critical Chain Method Using Genetic Algorithm. Journal of Engineering and Applied Sciences, 12(4), pp. 871-876.
8- Sobolev, K. and Amirjanov, A., 2010. Application of genetic algorithm for modeling of dense packing of concrete aggregates. Construction and Building materials, 24(8), pp.1449-1455.
9- Meng, W., Valipour, M. and Khayat, K.H., 2017. Optimization and performance of cost-effective ultra-high performance concrete. Materials and structures, 50(1), p.29.
10- Tošić, N., Marinković, S. and Ignjatović, I., 2016. A database on flexural and shear strength of reinforced recycled aggregate concrete beams and comparison to Eurocode 2 predictions. Construction and Building Materials, 127, pp.932-944.
11- Nigdeli, S.M., Bekdas, G., Kim, S. and Geem, Z.W., 2015. A novel harmony search based optimization of reinforced concrete biaxially loaded columns. Structural Engineering and Mechanics, 54(6), pp.1097-1109.
12- Boindala, S. P., & Arunachalam, V. (2020). Concrete Mix Design Optimization Using a Multi-objective Cuckoo Search Algorithm. In Soft Computing: Theories and Applications (pp. 119-126). Springer, Singapore.
13- Sun, L., Koopialipoor, M., Armaghani, D. J., Tarinejad, R., & Tahir, M. M. (2019). Applying a meta-heuristic algorithm to predict and optimize compressive strength of concrete samples. Engineering with Computers, 1-13.
14- Kalemci, E. N., İkizler, S. B., Dede, T., & Angın, Z. (2020, February). Design of reinforced concrete cantilever retaining wall using Grey wolf optimization algorithm. In Structures (Vol. 23, pp. 245-253). Elsevier.
15- Whitley, D., 1994. A genetic algorithm tutorial. Statistics and computing, 4(2), pp.65-85.
16- TAHERI AMIRI, M.J., Ashrafian, A., Haghighi, F.R. and Javaheri Barforooshi, M., 2019. Prediction of the Compressive Strength of Self-compacting Concrete containing Rice Husk Ash using Data Driven Models. Modares Civil Engineering journal, 19(1), pp.196-206.
17- Goldberg, D.E. and Holland, J.H., 1988. Genetic algorithms and machine learning. Machine learning, 3(2), pp.95-99.
18- Askarzadeh, A., 2016. A novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithm. Computers & Structures, 169, pp.1-12.
19- Salemi, N. and Behfarnia, K., 2013. Effect of nano-particles on durability of fiber-reinforced concrete pavement. Construction and Building Materials, 48, pp.934-941.
20- Fallah, S. and Nematzadeh, M., 2017. Mechanical properties and durability of high-strength concrete containing macro-polymeric and polypropylene fibers with nano-silica and silica fume. Construction and building materials, 132, pp.170-187.
21- Sadrmomtazi, A. and Fasihi, A., 2010. Influence of polypropylene fibers on the performance of nano-SiO2-incorporated mortar. Iranian Journal of science and technology, 34(B4), p.385.
22- Ashrafian, A., Amiri, M.J.T., Rezaie-Balf, M., Ozbakkaloglu, T. and Lotfi-Omran, O., 2018. Prediction of compressive strength and ultrasonic pulse velocity of fiber reinforced concrete incorporating nano silica using heuristic regression methods. Construction and Building Materials, 190, pp.479-494.
23- Ashrafian, A., Shokri, F., Amiri, M.J.T., Yaseen, Z.M. and Rezaie-Balf, M., 2020. Compressive strength of Foamed Cellular Lightweight Concrete simulation: New development of hybrid artificial intelligence model. Construction and Building Materials, 230, p.117048.