تاثیر الیاف پلیمری ساده و هیبریدی بر مقاومت‌های مکانیکی و مقاومت در برابر حرارت‌های زیاد بتن ژئوپلیمری بر پایه متاکائولن

نوع مقاله : پژوهشی اصیل (کامل)

نویسندگان
1 دانشجوی کارشناسی ارشد مهندسی عمران-سازه، گروه مهندسی عمران، سازه و ژئوتکنیک، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
2 - استادیار گروه مهندسی عمران، سازه و ژئوتکنیک، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
3 استادیار گروه مهندسی مواد، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
4 استادیار گروه مهندسی عمران، سازه و ژئوتکنیک، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
5 دانشجوی کارشناسی ارشد مهندسی عمران-زلزله، گروه مهندسی عمران، سازه و ژئوتکنیک، واحد علوم و تحقیقات، دانشگاه آزاد اسلامی، تهران، ایران
چکیده
در سال­های اخیر ژئوپلیمر به عنوان یک عامل سیمانی جدید و دوستدار محیط زیست، به عنوان جایگزینی برای سیمان پرتلند مطرح شده است که می­تواند منجر به کاهش مشکلات زیست محیطی ناشی از تولید سیمان پرتلند شود. بتن ژئوپلیمری الیافی به عنوان یک نوع از بتن‌های جدید با شکل‌پذیری بیشتر نسبت به بتن معمولی، شناخته می‌شود. در این پژوهش آزمایشگاهی، از دو نوع الیاف پلیمری شامل: الیاف پلی پروپلین و الیاف هیبریدی چهارگانه پلی الفین، برای ساخت بتن ژئوپلیمری الیافی استفاده شد. پس از انجام آزمایش‌های اولیه و انتخاب طرح اختلاط بتن ژئوپلیمری، نمونه‌های بتن ژئوپلیمری الیافی و فاقد الیاف ساخته و عمل‌آوری شد. سپس آزمون‌های جذب آب، مقاومت فشاری، مقاومت کششی غیر‌مستقیم (برزیلین) و مقاومت خمشی سه نقطه‌ای از نمونه‌های بتن ژئوپلیمری گرفته شد. به منظور بررسی تاثیر الیاف بر مقاومت در برابر حرارت‌های بالا (200-800 درجه سانتی گراد) بتن ژئوپلیمری نیز آزمون‌های کاهش وزن و مقاومت فشاری بعد از مواجهه با دماهای بالا، از نمونه‌ها گرفته شد. نتایج نشان داد که الیاف سبب افزایش مقاومت فشاری، کششی و خمشی و کاهش جذب آب و وزن مخصوص نمونه‌ها در مقایسه با نمونه فاقد الیاف شده است اما استفاده از الیاف هیبریدی سبب بهبود قابل ملاحظه مقاومت‌های مکانیکی در مقایسه با الیاف ساده شد. همچنین استفاده از الیاف پلیمری اگرچه خطر کنده شدن لایه‌ای بتن را کاهش داد اما در مجموع، این الیاف تاثیر قابل ملاحظه‌ای بر مقاومت حرارتی بتن ژئوپلیمری ندارند.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Effect of Simple and Hybrid Polymer Fibers on Mechanical Strengths and High-temperature Resistance of Metakaolin-based Geopolymer Concrete

نویسندگان English

Amir bahador Moradikhou 1
Mir Hamid Hosseini 2
Azam Mousavi Kashi 3
Fereshteh Emami 4
Alireza Esparham 5
1 MSc. Student of civil, structural, and geotechnics engineering department, Islamic Azad University, Science and Research branch, Tehran, Iran
2 Assistant professor of civil, structural, and geotechnics engineering department, Islamic Azad University, Science and Research branch, Tehran, Iran
3 Assistant professor of materials engineering department, Islamic Azad University, Science and Research branch, Tehran, Iran
4 Assistant professor of civil, structural, and geotechnics engineering department, Islamic Azad University, Science and Research branch, Tehran, Iran
5 MSc. Student of civil, structural, and geotechnics engineering department, Islamic Azad University, Science and Research branch, Tehran, Iran
چکیده English

Concrete due to its special feature, is the most widely consumed material in the world, after water. But the production process of ordinary Portland cement as a main component of conventional concrete, has major disadvantages such as high amount of CO2 emission and high energy consumption. Therefore, it seems necessary to find an alternative to ordinary Portland cement. In recent years, geopolymer has been introduced as a novel green cementing agent and environment-friendly alternative to the Portland cement which can eliminate the extensive negative of ordinary Portland cement production process. According to the needed engineering characteristics perspective in civil engineering, the geopolymer concretes have better chemical and mechanical properties than the ordinary ones such as high compressive, flexural and tensile strength, rapid hardening, resistance against high heat and firing, low penetration, resistance against salts and acids attacks, and low creep. On the other hand, in terms of technical characteristics, concrete has some disadvantages, most notably low tensile strength and consequently low ductility. Therefore, the use of different fibers in the concrete mixture and the manufacture of fiber reinforced concrete is considered as an appropriate solution to eliminate these defects. Also, fiber reinforced geopolymer concrete is known as a novel type of concretes with higher ductility than ordinary concretes. In this experimental study, two types of polymer fibers, including simple polypropylene fibers and 4-element polyolefin hybrid fibers, were used to manufacture fiber reinforced geopolymer concrete specimens. In this regard, fiber reinforced and non-fiber geopolymer concrete specimens were made and cured in 80 °C for 24 hours. After curing, specimens were placed in the ambient condition and associated tests including: density, 3-days water absorption, 7-and 28-days compressive, Brazilian indirect tensile and three point flexural strengths, were performed to study effect of fibers on metakaolin-based geopolymer concrete mechanical properties. Also, to study effect of fibers on high-temperature resistance of metakaolin-based geopolymer concrete, specimens weight and compressive strength loss percentage after exposure to high temperatures up to 800 °C, were measured. The obtained results indicated that using fibers in geopolymer concrete mixture, result in increasing compressive, indirect tensile and flexural strengths and also decreasing in density and 3-days water absorption. Further, the use of hybrid fibers due to their ability to inhibit the cracking process from both micro and macro levels, significantly improved compressive, indirect tensile and flexural strengths compared to simple fibers. The optimum amount of 4-element polyolefin fibers for compressive, tensile and flexural strength improvement was measured 0.2%, 0.2% and 0.15% (by volume), respectively. Also, the optimum amount of polypropylene fibers for compressive, tensile and flexural strengths improvement was measured 0.2% (by volume). In term of high-temperature resistance, although the polymer fibers reduced the risk of the explosive sapling of geopolymer concrete specimens due to generation micro channels which were randomly distributed in concrete because of melting of fibers, resulting in less weight loss than non-fiber specimen, but on the other hand, the compressive strength loss of polymer fiber reinforced specimens were higher than non-fiber one. Overall, it can be concluded that these fibers did not have a significant effect on the high-temperature resistance of geopolymer concrete.

کلیدواژه‌ها English

fiber reinforced geopolymer concrete
hybrid fibers
polyolefin fibers
compressive strength
Tensile strength
Flexural strength
high-temperature resistance
[1] Phummiphan I, Horpibulsuk S, Rachan R, Arulrajah A, Shen S-L, Chindaprasirt P. High calcium fly ash geopolymer stabilized lateritic soil and granulated blast furnace slag blends as a pavement base material. Journal of Hazardous Materials. 2018;341:257-67.
[2] McCaffrey R. Climate Change and the Cement Industry. Global Cement and Lime Magazine (Environmental Special Issue). 2002:15-9.
[3] Andrejkovičová S, Sudagar A, Rocha J, Patinha C, Hajjaji W, da Silva EF, et al. The effect of natural zeolite on microstructure, mechanical and heavy metals adsorption properties of metakaolin based geopolymers. Applied Clay Science. 2016;126:141-52.
[4] Neupane K, Chalmers D, Kidd P. High-Strength Geopolymer Concrete- Properties, Advantages and Challenges. Advances in Materials. 2018;7(2):15-25.
[5] Assi LN, Eddie Deaver E, Ziehl P. Effect of source and particle size distribution on the mechanical and microstructural properties of fly Ash-Based geopolymer concrete. Construction and Building Materials. 2018;167:372-80.
[6] Davidovits J. Geopolymer cements to minimise carbon-dioxide greenhouse-warming. Ceramic Transactions. 1993;37:165-82.
[7] Meyer C. The greening of the concrete industry. Cement & Concrete Composites. 2009;31(8):601-5.
[8] Chen C, Habert G, Bouzidi Y, Jullien A. Environmental impact of cement production: detail of the different processes and cement plant variability evaluation. Journal of Cleaner Production. 2010;18:478–85.
[9] Bashir I, Kapoor K, Sood H. An Experimental Investigation on the Mechanical Properties of Geopolymer Concrete. International Journal of Latest Research in Science and Technology. 2017;6(3):33-6.
[10] Ekinci E, Türkmen İ, Kantarci F, Karakoç MB. The improvement of mechanical, physical and durability characteristics of volcanic tuff based geopolymer concrete by using nano silica, micro silica and Styrene-Butadiene Latex additives at different ratios. Construction and Building Materials. 2019;201:257-67.
[11] Karakoç MB, Türkmen İ, Maras MM, Kantarci F, Demirbog˘a R, Ug˘ur Toprak M. Mechanical properties and setting time of ferrochrome slag based geopolymer paste and mortar. Construction and Building Materials. 2014;72(Supplement C):283–92.
[12] Yaseri S, Hajiaghaei G, Mohammadi F, Mahdikhani M, Farokhzad R. The role of synthesis parameters on the workability, setting and strength properties of binary binder based geopolymer paste. Construction and Building Materials. 2017;157(Supplement C):534–45.
[13] Karthik A, Sudalaimani K, Vijaya Kumar CT. Investigation on mechanical properties of fly ash-ground granulated blast furnace slag based self curing bio-geopolymer concrete. Construction and Building Materials. 2017;157(Supplement C):338–49.
[14] Bagheri A, Nazari A. Compressive strength of high strength class C flyash-based geopolymers with reactive granulated blast furnace slagaggregates designed by Taguchi method. Materials & Design. 2014;54:483–90.
[15] Cheng TW, Chiu JP. Fire-resistant geopolymer produced by granulated blast furnace slag. Minerals Engineering. 2003;16(3):205-10.
[16] Sakkas K, Panias D, Nomikos PP, Sofianos AI. Potassium based geopolymer for passive fire protection of concrete tunnels linings. Tunnelling and Underground Space Technology. 2014;43:148-56.
[17] Sarker PK, Kelly S, Yao Z. Effect of fire exposure on cracking, spalling and residual strength of fly ash geopolymer concrete. Materials & Design. 2014;63:584-92.
[18] Lee WKW, van Deventer JSJ. The effects of inorganic salt contamination on the strength and durability of geopolymers. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2002;211(2):115-26.
[19] Palomo A, Blanco-Varela MT, Granizo ML, Puertas F, Vazquez T, Grutzeck MW. Chemical stability of cementitious materials based on metakaolin. Cement and Concrete Research. 1999;29(7):997-1004.
[20] Zhang M, Guo H, El-Korchi T, Zhang G, Tao M. Experimental feasibility study of geopolymer as the next-generation soil stabilizer. Construction and Building Materials. 2013;47:1468-78.
[21] Wallah SE. Creep Behaviour of Fly Ash-Based Geopolymer Concrete. Civil Engineering Dimension. 2010;12(2):73-8.
[22] DeSilva P, Sagoe-Crenstil K, Sirivivatnanon V. Kinetics of geopolymerization: role of Al2O3 and SiO2. Cement and Concrete Research. 2007;37(4):512-8.
[23] Gao K, Lin K-L, Wang D, Hwang C-L, Anh Tuan BL, Shiu H-S, et al. Effect of nano-SiO2 on the alkali-activated characteristics of metakaolin-based geopolymers. Construction and Building Materials. 2013;48:441-7.
[24] Görhan G, Kürklü G. The influence of the NaOH solution on the properties of the fly ash-based geopolymer mortar cured at different temperatures. Composites Part B: Engineering. 2014;58:371-7.
[25] Hardjito D, Wallah SE, Sumajouw DMJ, Rangan BV. On the Development of Fly Ash-Based Geopolymer Concrete. ACI Materials Journal. 2004;101(6):467-72.
[26] Naaman AE, Wongtanakitcharoen T, Hauser G. Influence of Different Fibers on Plastic Shrinkag Cracking of Concrete. ACI Materials Journal. 2005;102(1):49-58.
[27] ACI Committee 544, Measurements of Properties of Fiber Reinforced Concrete, ACI Materials Journal,1996.
[28] Soroushian P. Secondary reinforcemrnt adding cellulose fibers. ACI Concrete International. 1986:28-38.
[29] Celik A, Yilmaz K, Canpolat O, Al-mashhadani MM, Aygörmez Y, Uysal M. High-temperature behavior and mechanical characteristics of boron waste additive metakaolin based geopolymer composites reinforced with synthetic fibers. Construction and Building Materials. 2018;187:1190-203.
[30] Al-Majidi MH, Lampropoulos A, Cundy AB. Steel fibre reinforced geopolymer concrete (SFRGC) with improved microstructure and enhanced fibre-matrix interfacial properties. Construction and Building Materials. 2017;139:286–307.
[31] Gao X, Yu QL, Yu R, Brouwers HJH. Evaluation of hybrid steel fiber reinforcement in high performance geopolymer composites. Materials and Structures. 2017;50(2):165.
[32] Asrani NP, Murali G, Parthiban K, Surya K, Prakash A, Rathika K, et al. A feasibility of enhancing the impact resistance of hybrid fibrous geopolymer composites: Experiments and modelling. Construction and Building Materials. 2019;203:56-68.
[33] Alberti MG, Enfedaque A, Gálvez JC, Cánovas MF, Osorio IR. Polyolefin fiber-reinforced concrete enhanced with steel-hooked fibers in low proportions. Materials & Design. 2014;60:57-65.
[34] Han T-Y, Lin W-T, Cheng A, Huang R, Huang C-C. Influence of polyolefin fibers on the engineering properties of cement-based composites containing silica fume. Materials & Design. 2012;37:569-76.
[35] Deng Z, Shi F, Yin S, Tuladhar R. Characterisation of macro polyolefin fibre reinforcement in concrete through round determinate panel test. Construction and Building Materials. 2016;121:229-35.
[36] ASTM C127-15, Standard Test Method for Relative Density (Specific Gravity) and Absorption of Coarse Aggregate, ASTM International, West Conshohocken, PA, 2015.
[37] ASTM C128-15, Standard Test Method for Relative Density (Specific Gravity) and Absorption of Fine Aggregate, ASTM International, West Conshohocken, PA, 2015.
[38] ASTM C136 / C136M-14, Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates, ASTM International, West Conshohocken, PA, 2014.
[39] ASTM D2419-14, Standard Test Method for Sand Equivalent Value of Soils and Fine Aggregate, ASTM International, West Conshohocken, PA, 2014.
[40] British Standards Institution, Testing Concrete: Method for Determination of the Compressive Strength of Concrete Cubes, BS1881: Part116: 1983, London.
[41] ASTM C496 / C496M-17, Standard Test Method for Splitting Tensile Strength of Cylindrical Concrete Specimens, ASTM International, West Conshohocken, PA, 2017.
[42] ASTM C293 / C293M-16, Standard Test Method for Flexural Strength of Concrete (Using Simple Beam With Center-Point Loading), ASTM International, West Conshohocken, PA, 2016.
[43] ASTM C1018-97, Standard Test Method for Flexural Toughness and First-Crack Strength of Fiber-Reinforced Concrete (Using Beam With Third-Point Loading) (Withdrawn 2006), ASTM International, West Conshohocken, PA, 1997.
[44] ASTM C642-13, Standard Test Method for Density, Absorption, and Voids in Hardened Concrete, ASTM International, West Conshohocken, PA, 2013.
[45] Ganesan N, Abraham R, Deepa Raj S. Durability characteristics of steel fibre reinforced geopolymer concrete. Construction and Building Materials. 2015;93:471-6.
[46] Noushini A, Hastings M, Castel A, Aslani F. Mechanical and flexural performance of synthetic fibre reinforced geopolymer concrete. Construction and Building Materials. 2018;186:454-75.
[47] Zhang H, Wang L, Zheng K, Bakura TJ, Totakhil PG. Research on compressive impact dynamic behavior and constitutive model of polypropylene fiber reinforced concrete. Construction and Building Materials. 2018;187:584-95.
[48] Sukontasukkul P, Pongsopha P, Chindaprasirt P, Songpiriyakij S. Flexural performance and toughness of hybrid steel and polypropylene fibre reinforced geopolymer. Construction and Building Materials. 2018;161:37-44.
[49] Zhang Z-h, Yao X, Zhu H-j, Hua S-d, Chen Y. Preparation and mechanical properties of polypropylene fiber reinforced calcined kaolin-fly ash based geopolymer. Journal of Central South University of Technology. 2009;16(1):49-52.
[50] Duxson P, Fernández-Jiménez A, Provis JL, Lukey GC, Palomo A, van Deventer JSJ. Geopolymer technology: the current state of the art. Journal of Materials Science. 2007;42(9):2917-33.
[51] Hua-jun Z, Xiao Y, Zu-hua Z. Optimum activated temperature of kaolin. JOURNAL OF CENTRAL SOUTH UNIVERSITY OF TECHNOLOGY. 2007;14:131-4.
[52] Yunsheng Z, Wei S, Zongjin L. Impact behavior and microstructural characteristics of PVA fiber reinforced fly ash-geopolymer boards prepared by extrusion technique. Journal of Materials Science. 2006;41(10):2787-94.
[53] Grünewald S. Performance-based design of self-compacting fibre reinforced concrete: Delft University Press; 2004.
[54] Fang C, Xie J, Zhang B, Yuan B, Wang C. Impact properties of geopolymeric concrete: a state-of-the-art review. IOP Conference Series: Materials Science and Engineering. 2018;284:012012.
[55] Su H, Xu J, Ren W. Mechanical properties of geopolymer concrete exposed to dynamic compression under elevated temperatures. Ceramics International. 2016;42(3):3888-98.
[56] Kong DLY, Sanjayan JG, Sagoe-Crentsil K. Comparative performance of geopolymers made with metakaolin and fly ash after exposure to elevated temperatures. Cement and Concrete Research. 2007;37(12):1583-9.
[57] Uysal M. Self-compacting concrete incorporating filler additives: Performance at high temperatures. Construction and Building Materials. 2012;26(1):701-6.