ارزیابی شکنندگی لرزه‌ای و حاشیه ایمنی فروریزش قاب های خمشی بتن‌آرمه تحت اثر خوردگی آرماتورها

نوع مقاله : پژوهشی اصیل (کامل)

نویسندگان
1 دانشگاه صنعتی اراک
2 دانشکده مهندسی عمران، دانشگاه علم و صنعت ایران
3 گروه مهندسی عمران، واحد تهران شرق، دانشگاه آزاد اسلامی،
چکیده
یکی از مهمترین اهداف طراحی و تعمیر و نگهداری سازه­ ها تامین ایمنی آنها در برابر حوادث و بحران­های طبیعی نظیر زلزله است، که نیازمند تامین مقاومت کافی و عملکرد مطلوب و مورد انتظار سازه ­ها میباشد. عوامل مختلفی نظیر خوردگی آرماتورها بر وقوع خرابی و میزان آسیب در سازه­ های بتن ­آرمه تاثیر میگذارند. عملکرد ‌لرزه‌ای و قابلیت اعتماد سازه‌های موجود از شرایط محیطی و نقص‌هایی که در طول عمر سازه بوجود می‌آیند، تاثیر می­پذیرد و در نتیجه این عملکرد متفاوت از عملکردی خواهد بود که در هنگام طراحی سازه فرض می شود. خوردگی آرماتور سازه‌های بتن آرمه یکی از عوامل اصلی افزایش آسیب‌پذیری این سازه‌ها است. در این مطالعه جهت بررسی شکنندگی لرزه‌ای و آسیب‌پذیری سازه‌ها تحت اثر خوردگی دو سازه قاب خمشی بتن‌آرمه 3 و 7 طبقه برمبنای پلاستسیته‌ی متمرکز مدلسازی شده است و دو سناریوی خوردگی به صورت 10% و 20% کاهش سطح مقطع آرماتور و اثرات منفی آنها به اعضای سازه‌ای این مدل‌ها اعمال شده است. سپس با استفاده از تحلیل استاتیکی غیرخطی و تحلیل دینامیکی افزایشی (IDA) و استخراج منحنی‌های شکنندگی، عملکرد و شکنندگی لرزه‌ای این سازه‌ها مورد بررسی قرار گرفته است. نتایج نشان می‌دهد که در اثر خوردگی احتمال خرابی و شکنندگی لرزه‌ای سازه‌ها افزایش و حاشیه ایمنی فروریزش سازه‌ها (CMR) کاهش یافته است بطوریکه تحت سناریوی خوردگی 20% احتمال خرابی سازه 3 طبقه علیرغم افزایش همچنان زیر 10% بوده ولی در سازه 7 طبقه احتمال خرابی از مقدار مجاز آیین نامه‌ای (10%) فراتر می‌رود و نیاز به بهسازی دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Evaluation of Seismic Fragility and Collapse Margin Ratio of Reinforced Concrete Moment Resisting Frame under Steel Reinforcement Corrosion

نویسندگان English

Ali Khodam 1
Reza Kameli 2
Mohammad Ghanooni Bagha 3
Mohsenali Shayanfar 2
1 Arak University of Technology
2 School of Civil Engineering, Iran University of Science and Technology
3 Department of Civil Engineering, East Tehran Branch, Islamic Azad University
چکیده English

One of the most concerns about design and maintenance of structures in civil engineering is the safety of structures in the events of natural disasters, including earthquakes, which requires adequate resistance and providing expected performance of structures. Different factors can have an impact on the occurrence of damage and the damage content in structures and, consequently, the loss of economic assets as well as human health and life safety during earthquakes. Normally, high alkaline property of concrete, PH about 13, forms a protective oxide layer on the reinforcement steel surface. The Carbon dioxide in the atmosphere or the chloride ion in the concrete environment especially in the coastal zone, along with the moisture and the oxygen can penetrate through the concrete pores and micro-cracks and can reach the rebar surface. Then, they cause rebar corrosion inside the concrete by destroying the protective oxide layer on the steel surface. Chloride ions reach the passive layer according to the explained pattern and they begin to react in the passive layer when the amount of chloride ions exceed the critical value and cause the perforation corrosion. Therefore, the performance of deteriorating structures can be different from the desirable performance of pristine structures. Corrosion of steel reinforcement in reinforced concrete (RC) structures is one of the main factors in increasing the vulnerability of RC structures. Due to corrosion, mechanical properties of steel involving yield and ultimate stresses, their corresponding strains, and the elasticity modulus of steel will change. Also the cross-sectional area of steel reinforcement decreases. Furthermore, after cracking, the mechanical properties of concrete will change. In this study, in order to investigate the seismic fragility and vulnerability of RC structures due to steel reinforcement corrosion, two buildings involving a 3-storey and a 7-storey RC moment frames are modeled based on the lumped plasticity model for considering nonlinearity. Two corrosion scenarios of 10 and 20 percent reduction of steel reinforcement cross section and their effects applied to the structural members of these RC frames. Then, seismic performance and the fragility of these two RC frames are investigated using nonlinear static analysis (pushover analysis) and incremental dynamic analysis. Fragility analysis results show that the probability of failure and seismic fragility of RC structures increased due to reinforcement corrosion. Therefore, fragility curves shifted to the left due to corrosion, illustrating the increase in the probability of damage at different spectral accelerations. The safety margin of the collapse of the 3 and 7-storey structures also decreased due to corrosion. For example, as a result of 20 percent corrosion scenario, safety margin of three-storey structure decreased by 16.5 percent and the safety margin of seven-story structure decreased by 28 percent. Results also illustrate that the collapse margin ratios of both structures (CMR) are reduced for 10 percent corrosion scenario. Although the probability of failure increased for 3-storey RC frame, it remains below 10 percent. However, for 7-storey RC frame, the probability of failure exceeds 10% (allowable failure probability adopted by the code) and the frame needs to be rehabilitated.

کلیدواژه‌ها English

Corrosion of RC Structures
incremental dynamic analysis (IDA)
Fragility Curve
probability of failure
collapse margin ratio (CMR)
[1] Li, Q., Wang, C. and Ellingwood, B.R., 2015. Time-dependent reliability of aging structures in the presence of non-stationary loads and degradation. Structural Safety, 52, pp.132-141.
[2] Yalciner, H., Sensoy, S. and Eren, O., 2012. Time-dependent seismic performance assessment of a single-degree-of-freedom frame subject to corrosion. Engineering Failure Analysis, 19, pp.109-122.
[3] Malumbela, G., Alexander, M. and Moyo, P., 2009. Steel corrosion on RC structures under sustained service loads—A critical review. Engineering Structures, 31(11), pp.2518-2525.
[4] Ghanooni-Bagha, M., Shayanfar, M.A., Shirzadi-Javid, A.A. and Ziaadiny, H., 2016. Corrosion-induced reduction in compressive strength of self-compacting concretes containing mineral admixtures. Construction and Building Materials, 113, pp.221-228.
[5] Shayanfar, M.A., Ghanooni-bagha, M., Asgarani, S. 2017. Influence of effective parameters variations on chloride corrosion initiation. Journal of Modares Civil Engineering, 17 (3), 69-76. (In Persian)
[6] Moarefzadeh, M.R., 2016. Reliability of Marine Steel Structures Against Corrosion. Modares Civil Engineering journal, 16(3), pp.203-215. (In Persian)
[7] Karapetrou, S.T., Fotopoulou, S.D. and Pitilakis, K.D., 2017. Seismic Vulnerability of RC Buildings under the Effect of Aging. Procedia environmental sciences, 38, pp.461-468.
[8] Torgal, F.P., Miraldo, S., Labrincha, J.A. and De Brito, J., 2012. An overview on concrete carbonation in the context of eco-efficient construction: Evaluation, use of SCMs and/or RAC. Construction and Building Materials, 36, pp.141-150.
[9] Rodriguez, J., Ortega, L.M. and Casal, J., 1994, June. Corrosion of reinforcing bars and service life of reinforced concrete structures: corrosion and bond deterioration. In International conference on concrete across borders, Odense, Denmark (Vol. 2, pp. 315-326).
[10] Simioni, P., 2009. Seismic response of reinforced concrete structures affected by reinforcement corrosion (Doctoral dissertation, Technische Universität Braunschweig).
[11] Lee, H.S. and Cho, Y.S., 2009. Evaluation of the mechanical properties of steel reinforcement embedded in concrete specimen as a function of the degree of reinforcement corrosion. International journal of fracture, 157(1-2), pp.81-88.
[12] Hosseinpour, F. and Abdelnaby, A.E., 2017. Fragility curves for RC frames under multiple earthquakes. Soil Dynamics and Earthquake Engineering, 98, pp.222-234.
[13] Haselton, C.B. and Pacific Earthquake Engineering Research Center, 2008. Beam-column element model calibrated for predicting flexural response leading to global collapse of RC frame buildings. Pacific Earthquake Engineering Research Center.
[14] Ibarra, L.F., Medina, R.A. and Krawinkler, H., 2005. Hysteretic models that incorporate strength and stiffness deterioration. Earthquake engineering & structural dynamics, 34(12), pp.1489-1511.
[15] ATC, F., 2009. P695, Quantification of Building Seismic Performance Factors.
[16] Zentner, I., Gündel, M. and Bonfils, N., 2017. Fragility analysis methods: Review of existing approaches and application. Nuclear Engineering and Design, 323, pp.245-258.