تاثیرات استفاده از هیبرید الیاف فولادی و الیاف شیشه بر مشخصات مکانیکی، جمع شدگی و دوام کامپوزیت های سیمانی

نوع مقاله : پژوهشی اصیل (کامل)

نویسندگان
1 دانشگاه تحصیلات تکمیلی صنعتی و فناوری کرمان/کرمان/ایران
2 دانشکده عمران/دانشگاه تحصیلات تکمیلی صنعتی و فناوری کرمان/کرمان/ایران
چکیده
این مطالعه به بررسی تأثیر الیاف فولادی، الیاف شیشه و هیبرید آنها بر خواص کامپوزیت‌های سیمانی می‌پردازد. خواص مکانیکی موردبررسی شامل مقاومت فشاری و مقاومت خمشی بوده و میزان جذب انرژی نمونه‌ها با معیار چقرمگی خمشی تعیین‌شده است. در مخلوط‌های موردمطالعه سیمان پرتلند و آلومینات کلسیم به‌عنوان عامل چسباننده در ساختار استفاده‌شده‌اند. به منظور بررسی تأثیرالیاف ازنمونه­های حاوی 2 درصد الیاف فولادی (درصدی از حجم کل مخلوط)، 2 درصد الیاف شیشه ( درصدی از حجم کل مخلوط) وهیبرید این دو الیاف (2% الیاف فولادی و 2% الیاف شیشه) بهره گرفته شده است. استفاده از الیاف فولادی و همچنین الیاف شیشه در مخلوط‌های سیمانی باعث افزایش مقاومت خمشی می­شود، لیکن هیبرید آن با الیاف شیشه مقاومت خمشی بیشتر از مخلوط‌های حاوی الیاف فولادی را به ارمغان می­آورد. همچنین مخلوط‌های هیبریدی میزان جمع شدگی را به میزان 20 تا 30 درصد نسبت به مخلوط شاهد در یک دوره 270 روزه کاهش داده است. در کنترل خواص دوام که با استفاده از نفوذپذیری یون کلراید موردسنجش قرار داده شد، مخلوط­ های اصلاح شده با الیاف ­های فولادی و شیشه و همچنین هیبرید این الیاف دارای نفوذ پذیری یون کلراید بالاتر در مقایسه با سایر مخلوط ها بوده ­اند. الیاف شیشه به دلیل افزایش انسجام ساختاری میان خمیر و الیاف فولادی و مسدود نمودن تخلخل­های پیرامون الیاف فولادی سبب کاهش در میزان نفوذ یون کلراید شده است اما با این وجود میزان نفوذ یون کلراید بالایی را داشته ­اند.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Hybrid performance of steel and glass fibers on mechanical properties, shrinkage and durability of cement composites

نویسندگان English

Sarvenaz Moetamed 1
Hesam Madani 2
1 Graduate University of Advanced Technology, kerman, Iran
2 Faculty Member of Civil Engineering and Geodesy, Graduate University of Advanced Technology, kerman, Iran
چکیده English

This study investigates the effect of steel fibers and its hybrid form with glass fiber on the properties of cement composites. The studied mechanical properties included compressive strength and flexural strength, and the energy absorption rate of the specimens was determined by the flexural toughness. In the mixtures, Portland cement and calcium aluminate have been used as bonding agents the mixes containing 2% steel fiber (% of total volume of the mixture), 2% AR Glass fiber, and hybrid of these fibers were made of glass fiber (2% steel fibers and 2% glass fiber), the length of these fibers was 25 mm. The compressive strength test was performed at the age of 1, 7, 28 and 90 days. Speciments made with calcium aluminate cement had higher compressive strength due to quick formation of microstructure compared to Portland cement mixtures, so that 90-day compressive strength of Portland cement mix was lower compared to the 1-day compressive strength of Calcium aluminate concrete. Incorporating 2% steel fibers also had a slightly enhancing effect on compressive strength. Flexural strength test was carried out at 28 and 90 days. The steel fibers create appropriate mechanical bond with the cementitious matrix, and the ultimate flexural strength was about 2 times higher than non-fibers specimen, due to the congrated geometry of the steel fibers. Substituting glass fiber also increased the ultimate flexural strength due to the high aspect ratio glass fibers and the well formed Interfacial transition zone (ITZ). The hybridization of the aforementioned fibers with steel fibers increases the bending strength due to the synergistic effect. The energy absorption content of the cementitious mix measured by flexural toughness index shows that this energy absorption content increases with the hybridization of the glass and steel fibers, so that the hybrid specimen made with Portland cement had a flexural toughness of 34.4 Nm. The glass fiber increased the toughness due to its excellent energy absorption. The steel fibers in the mixed increased the area under the flexural loading cureve and prevent the mixture from being destroyed by the first crack. In the shrinkage test results the control specimen with the two types of cements did not differ significantly, but the addition of 2% of the fibers (steel fiber and glass fiber) reduced shrinkage by their limiting effect on length change and propagation of micro cracks. When the percentage of glass fiber become higher, similar to the hybrid mix, the shrinkage was reduced further. This experiment was performed uo to 270 days and it was observed that the shrinkage of the hybrid specimen made with Calcium aluminate cement reduced by 65.5% compared to the plain concrete. In this study, the RCMT was carried out at 90 days. The results indicate that the penetration rate of the hybrid specimens and the glass fiber mixtures were lower than those of the steel fibers incorporated mixed. Also, in comparing two types of calcium aluminate cement and Portland cement, specimen made with calcium aluminate cement, the chloride ion penetration was lower than those made with Portland cement due to the improved Interfacial transition zone (ITZ) and less porosity of this type of cement.

کلیدواژه‌ها English

Calcium Aluminate Cement
Portland cement
steel fibers
Glass Fibers
Mechanical properties
Shrinkage
durability
[[1] saidi kia A, Madani H. The influence of ethylene vinyl acetate and vinyl acetate polymers on mechanical properties, shrinkage and durability of Calcium Aluminate Cement based mixtures. Modares Civ Eng J. 2018; 18 (4). (In Persian)
[2] Barnes P, Bensted J. Structure and Performance of Cements, Second Edition 2002.
[3] Kurdowski W. Cement and concrete chemistry. Springer Science & Business; 2014.
[4] Scrivener K. Calcium aluminate cements. In: Advanced Concrete Technology. 2003.
[5] concrete pavement maintenance/Repair. Cement Concrete & Aggregates Australia; 2009.
[6] Newman J, Choo BS. Advanced concrete technology 3: processes. Butterworth-Heinemann; 2003.
[7] Mostafa NY, Zaki ZI, Abd OH. Cement & Concrete Composites Chemical activation of calcium aluminate cement composites cured at elevated temperature. Cem Concr Compos. 2012;34(10):1187–93.
[8] Gu P, Beaudoin JJ, Quinn EG, Myers RE. Early strength development and hydration of ordinary portland cement/calcium aluminate cement pastes. Adv Cem Based Mater. 1997;6(2):53–8.
[9] Hewlett PC. Lea’s Chemistry of Cement and Concrete. Lea’s Chemistry of Cement and Concrete. 2003.
[10] Kırca Ö, Yaman İÖ, Tokyay M. Compressive strength development of calcium aluminate cement–GGBFS blends. Cem Concr Compos. 2013;35(1):163–70.
[11] Odler I. Special Inorganic Cements. Taylor & Francis Group. 2000.
[12] Xu L, Wang P, Zhang G. Formation of ettringite in Portland cement/calcium aluminate cement/calcium sulfate ternary system hydrates at lower temperatures. Constr Build Mater. 2012;31:347–52.
[13] Cardoso FA, Innocentini MDM, Akiyoshi MM, Pandolfelli VC. Effect of curing time on the properties of CAC bonded refractory castables. J Eur Ceram Soc. 2004;
[14] Antonovič V, Kerienė J, Boris R, Aleknevičius M. The effect of temperature on the formation of the hydrated calcium aluminate cement structure. Procedia Eng. 2013;57:99–106.
[15] Löber P, Holschemacher K. Structural Glass Fiber Reinforced Concrete for Slabs on Ground. World J Eng Technol. 2014;2(03):48.
[16] Afroughsabet V, Biolzi L, Ozbakkaloglu T. High-performance fiber-reinforced concrete: a review. J Mater Sci. 2016;51(14):6517–51.
[17] Daniel J, Gopalaratnam V, Galinat M. Report on Reinforced Concrete Vol. 96. 2002. http://indiafiber.com/Files/ACI report.pdf
[18] Kene KS, Vairagade VS, Sathawane S. Experimental Study on Behavior of Steel and Glass Fiber Reinforced Concrete Composites. Bonfring Int J Ind Eng Manag Sci. 2012;2(4):125–30.
[19] Luo X, Sun W, Chan SYN. Steel fiber reinforced high-performance concrete: a study on the mechanical properties and resistance against impact. Mater Struct. 2001;34(3):144–9.
[20] Muhammed İSKENDER BK. Glass Fibre Reinforced Concrete (GFRC). El-Cezerî J Sci Eng. 2018;5:136–62.
[21] Shakor PN, Pimplikar SS. Glass fibre reinforced concrete use in construction. Int J Technol Eng Syst. 2011;2(2):41–8.
[22] Kamal MM, Safan MA, Etman ZA, Salama RA. Behavior and strength of beams cast with ultra high strength concrete containing different types of fibers. HBRC J. 2014;10(1):55–63.
[23] Nguyen DL, Ryu GS, Koh KT, Kim DJ. Size and geometry dependent tensile behavior of ultra-high-performance fiber-reinforced concrete. Compos Part B Eng. 2014;58:279–92.
[24] Saidikia, A., Madani, H. Influence of polymer materials on the durability of Calcium Aluminate Cement based mixtures. J Concr Struct Mater, 2019; 3(2):24-40.
[25] ASTM International. ASTM C109/C109M-16a. Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50mm] Cube Specimens). Annual Book of ASTM Standards 2016.
[26] Eren Ö, Çelik T. Effect of silica fume and steel fibers on some properties of high-strength concrete. Constr Build Mater. 1997; 11(7-8):373-382.
[27] BS EN 196-1,Methods of testing cement. Determination of strength. 2016.
[28] Wang JY, Chia KS, Liew JYR, Zhang MH. Flexural performance of fiber-reinforced ultra lightweight cement composites with low fiber content. Cem Concr Compos. 2013;43: 39-47.
[29] Blunt JD, Ostertag CP. Deflection Hardening and Workability of Hybrid Fiber Composites. ACI Mater J. 2009;106(3):265.
[30] Soboyejo W. Mechanical properties of engineered materials. 2002;152.
[31] Astm C. 1018-97. Standard Test Method Flexural Toughness First-Crack Strength Fiber-Reinforced Concr. 1998.
[32] Gribniak V, Kaklauskas G, Kliukas R, Jakubovskis R. Shrinkage effect on short-term deformation behavior of reinforced concrete - When it should not be neglected. Mater Des. 2013;51:1060-1070.
[33] ASTM C. 490-04,” Standard Practice for Use of Apparatus for the Determination of Length Change of Hardened Cement, Paste, Mortar, and Concrete”. In: American Society for Testing and Materials. 2004.
[34] Toledo Filho RD, Ghavami K, Sanjuán MA, England GL. Free, restrained and drying shrinkage of cement mortar composites reinforced with vegetable fibres. Cem Concr Compos. 2005;27(5):537–46.
[35] Shi X, Xie N, Fortune K, Gong J. Durability of steel reinforced concrete in chloride environments: An overview. Construction and Building Materials. 2012;30:125-138.