حضور و مشخصه‌یابی میکروپلاستیکها در فاضلاب شهری، مطالعه موردی: تصفیه‌خانه فاضلاب ساری

نوع مقاله : پژوهشی اصیل (کامل)

نویسندگان
1 دانشجوی دکتری محیط زیست پژوهشکده علوم محیطی، تهران، ولنجک، بلوار دانشجو، دانشگاه شهید بهشتی
2 عضو هیات علمی (دانشیار) پژوهشکده علوم محیطی ، دانشگاه شهید بهشتی
چکیده
هر چند حضور گسترده میکروپلاستیک‌ها در محیط زیست در مطالعات زیادی نشان داده شده‌است، اما مقدار و منابع تولید آنها چندان مشخص نیست. در این میان، اغلب تصفیه‌خانه‌های فاضلاب به‌عنوان یکی از منابع اصلی تخلیه میکروپلاستیک‌ها به محیط در نظر گرفته می‌شوند. این مقاله برای اولین بار گزارشی از مقدار و ویژگی‌های میکروپلاستیک‌ها در یک تصفیه‌خانه فاضلاب شهری در ایران ارائه می‌دهد. بدین‌منظور، 30 لیتر نمونه‌ مرکب 24 ساعته در 3 تکرار از خروجی دانه‌گیر تصفیه‌خانه فاضلاب ساری در دو فصل زمستان و بهار 1396-1397 گرفته شد و پس از عبور نمونه‌ها از الک‌های استیل 500، 300 و 37 میکرومتر، مواد آلی موجود در نمونه با استفاده از هیدروژن پراکسید هضم و میکروپلاستیک‌ها به روش جداسازی مبتنی بر چگالی با کمک نمک سدیم یدید استخراج و توسط استریومیکروسکوپ و دستگاه میکرورامان بررسی شدند. تعداد میکروپلاستیک در نمونه‌ها در زمستان و بهار به‌ترتیب 560±5188.9 و 668±12666.7 بر مترمکعب بود که تفاوت معنی‌داری را با یکدیگر نشان دادند. نوع غالب میکروپلاستیک‌ها فیبر‌ با تعداد 544±4922.2 و 655±12022.2 بر مترمکعب به ترتیب در زمستان 96 و بهار 97 بود. در هر دو فصل، فیبرها و ذرات با اندازه 37-300 میکرومتر فراوان‌تر بودند و نوع و رنگ غالب فیبرها و ذرات به‌ترتیب پلی‌استر، پلی‌اتیلن و مشکی، آبی تشخیص داده شد. همچنین میزان میکروپلاستیک‌های ورودی به تصفیه‌خانه در دو فصل بهار و زمستان با یکدیگر متفاوت بود که ممکن است ناشی از اثر تغییرات آب و هوایی و فعالیت­های مردم در دو فصل بر میزان میکروپلاستیک­های رهاسازی شده به فاضلاب باشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Occurrence and Characterization of Microplastics in Urban Wastewater, A Case Study: Sari Wastewater Treatment Plant

نویسندگان English

Somayye Sadat Alavian Petroody 1
Seyed Hossein Hashemi 2
1 PhD candidate, Department of Environmental Pollution, Environmental Sciences Research Institute, Shahid Beheshti University, Iran
2 Associate professor, Department of Environmental Pollution, Environmental Sciences Research Institute, Shahid Beheshti University, Iran.
چکیده English

Plastics are a group of relatively high molecular weight organic materials that are obtained from the polymerization process. Plastics have diverse applications due to variety, lightness, strength and transparency. Given the immense benefits of this valuable commodity efficient cause increased worry environmental concerns. The major concern is for smaller pieces or microplastics (MPs) in the oceans that are not seen with the naked eye with a size less than 5mm. Plastics produced in microscopic size are called primary MPs. Primary MPs are composed of microscopic particles of plastic, also MPS that are transferred to the water ecosystem during industrial activities, physical, chemical or biological degradation of macroplastics and various human activities such as using of scrubs and cosmetics are referred to as secondary MPs. Microplastics have a small size that can be eaten and absorbed by the primary organisms in the food chain. The extensive presence of MPs in the environment has been shown by various studies. However, neither MPs concentrations nor their sources are completely known. Wastewater treatment plants (WWTPs) are considered as significant point sources discharging MPs to the environment. This paper is the first to report on the role of an urban WWTP in Iran, as a source of MPs pollution. Composite 30-liter/24-hour samples in 3 replicates took after the grit removal, during one day of winter and spring 2018. Samples were passed through a series of sieves in size of 500, 300 and 37μm (mesh 35, 50 and 400) and transferred to the laboratory for further processing. The sampled materials on each mesh screen were rinsed into a glass bottles with 1000ml ultrapure water depending on the fouling of mesh screens. In the laboratory, the glass sampling bottles were emptied into clean beakers, and dried at 70°C to concentrate the volume to 100ml. The beakers were placed on magnetic heater stirrers at 60°C and hydrogen peroxide (H2O2) solution (30%) was added to beakers to digest of organic matter that was present in the samles, including algae and other organic materials. After digestion of the organic matter and full hydrogen peroxide evaporation, 15 mL of sodium iodide (NaI) solution with a density of 1.7-1.75 g/cm3 were added to the dried sample for to density separation of the MPs from the sand particles. MPs floating in the NaI solution were collected by centrifugation and filtering the supernatant over a 37 μm screen. Then, the specimens were centrifuged and the floating particles were filtered using a screen size of 37μm (400 mesh) and washed with distilled water. To further minimize the overestimation of the suspected MPs, a staining method was applied using the Rose-Bengal solution. After extraction of MPs, their morphology and structure were examined by microscope and micro-Raman. The result showed that the wastewater contained 5188.9±560 and 12666.7±754 MPs/m3 in winter and spring, respectively, with the total numbers of MPs/m3 differing between the two seasons. The dominant type of MPs in the wastewater was microfibers with 4922.2±544 and 12022.2±655 per m3 in winter and spring, respectively. In both seasons, fibers and particles sizes of <300μm were the most abundant in comparison to larger sizes, and given the properties of MPs in the absorption of organic pollutants and heavy metals. Smaller microplastics have a higher surface-to-volume ratio, and thus they will have the greater ability to absorb the contaminants and more risk to the organisms. The predominant type of fibres and particles in this study was polyester and polyethylene, respectively, that these fibers and particles are likely to originate from the washing of synthetic clothing or carpet washing industry wastewater and microbeads in toothpaste and cosmetics, Also, The dominant color of the fibres and particles were identified as black, blue, respectively. The results showed that the number of microplastics entering the treatment plant in two spring and winter seasons were different, which could indicate the effect of climate change and also the activities of people in the two seasons on the number of microplastics released into the wastewater.

کلیدواژه‌ها English

Water resource
1- Sivan A., 2011 New perspectives in plastic biodegradation. Current Opinion in Biotechnology, 22, 422–426.
2- Barnes David K.A., Galgani F., Thompson R.C., & Barlaz M., 2009 Accumulation and fragmentation of plastic debris in global environments', Philosophical Transactions of the Royal Society B: Biological Sciences, 364, 1985-98.
3- Fowler C.W., 1987 Marine Debris and Northern fur Seals: A Case Study, Marine Pollution Bulletin, 18, 326–335.
4- Colton J.B., & Knapp F.D., 1974 Plastic Particles in Surface Waters of the Northwestern Atlantic, Science, 185, 491–497.
5- Laist D.W., 1997 Impacts of Marine Debris: Entanglement of Marine Life in Marine Debris Including a Comprehensive List of Species with Entanglement and Ingestion Records, Springer- Verlag, New York, 99-139.
6- Clapham, P.J.; Young, S.B. & Brownell, J.R., 1999 Baleen Whales: Conservation Issues andthe Status of the Most Endangered Populations, Mammal Review, 29, 35–60.
7- Erikson C., & Burton H., 2003 Origins and Biological Accumulation of Plastic Particles in fur Seals from Macquarie Island, Ambio, 32, 380–384.
8- Buchanan J. B., 1971 Pollution by synthetic fibres, Marine Pollution Bulletin, 2: 23.
9- Carpenter Edward J., and Smith K.L., 1972 Plastics on the Sargasso Sea surface, Science, 175, 1240-41.
10- Thompson R.C., Olsen Y., Mitchell R.P., Davis A., Rowland S.J., John A.W. & Russell A.E., 2004 Lost at sea: where is all the plastic?. Science. 304(5672), 838-838.
11- Wright S., Thompson R. & Galloway T., 2013 The Physical impacts of microplastics on marine organisms: A review, Environmental Pollution, 178, 483-492.
12- Lassen C., Hansen S.F., Magnusson K., Hartmann N.B., Jensen P.R., Nielsen T.G. & Brinch A., 2015 Microplastics: occurrence, effects and sources of releases to the environment in Denmark.Miranda D.d.A. & de Carvalho-Souza G.F., 2016 Are we eating plastic-ingesting fish?. Marine pollution Bulletin, 103 (1-2), 109-114.
13- Magni S., Binelli A., Pittura L., Avio C.G., Torre C.D., Parenti C.C., Gorbi S. & Regoli, F., 2019 The fate of microplastics in an Italian Wastewater Treatment Plant. Science of the Total Environment, 652, 602-610.
14- Yonkos L.T., Friedel E.A., Perez-Reyes A.C. & Ghosal S., 2014 Microplastics in four estuarine rivers in the Chesapeake Bay, U.S.A. Environmental Science & Technology, 48 (24), 14195 14202.
15- McCormick A., Hoellein T.J., Mason S.A., Schluep J. & Kelly J.J., 2014 Microplastic is an abundant and distinct microbial habitat in an urban river. Environmental Science & Technology, 48 (20), 11863-11871.
16- Free C.M., Jensen O.P., Mason S.A., Erikson M., Williamson N.J. & Boldgiv B., 2014 High-levels of microplastic pollution in a large, remote, mountain lake. Marine pollution Bulletin, 85 (1), 156-163.
17- Eriksen M., Mason S., Wilson S., Box C., Zellers A., Edwards W., Farley H. & Amato, S., 2013 Microplastic pollution in the surface waters of the laurentian great lakes. Marine pollution Bulletin, 77 (1-2), 177-182.
18- Browne M.A., Crump P., Niven S.J., Teuten E., Tonkin A., Galloway T. & Thompson, R., 2011 Accumulation of microplastic on shorelines worldwide: sources and sinks. Environmental Science & Technology, 45, 9175–9179.
19- Miranda D.d.A., de Carvalho-Souza G.F., 2016 Are we eating plastic-ingesting fish? Marine pollution Bulletin. 103(1-2), 109-114.
20- Avio C.G., Gorbi S., Milan M., Benedetti M., Fattorini D., d'Errico G., Pauletto M., Bargelloni L. & Regoli F., 2015 Pollutants bioavailability and toxicological risk from microplastics to marine mussels. Environmental Pollution, 198, 211-222.
21- Chua E.M., Shimeta J., Nugegoda D., Morrison P.D. & Clarke, B.O., 2014 Assimilation of polybrominated diphenyl ethers from microplastics by the marine amphipod, Allorchestes compressa. Environmental Science & Technology, 48 (14), 8127-8134.
22- Cole M., Lindeque P., Halsband C. & Galloway T. S., 2011 Microplastics as contaminants in the marine environment: a review. Marine pollution Bulletin, 62, 2588–2597.
23- Ziajahromi S., Neale P.A., Rintoul L. & Leusch F.D.L., 2017 Wastewater treatment plants as a pathway for microplastics: Development of a new approach to sample wastewater-based microplastics. Water Research, 112: 93-99.
24- Rochman C.M., Tahir A., Williams S., Baxa D.V., Lam L., Miller J., The F.C., Werorilangi S. & The J., 2015 Anthropogenic debris in seafood: Plastic debris and fibers from textiles in fish and bivalves sold for human consumption. Scientific Reports, 5:14340.
25- Zitko V. & Hanlon M., 1991 Another source of pollution by plastics: skin cleaners with plastic scrubbers. Marine pollution Bulletin, 22,41– 42.
26- Lee J., Hong S., Song Y.K., Hong S.H., Jang Y.C., Jang M. & Shim W.J., 2013 Relationships among the abundances of plastic debris in different size classes on beaches in South Korea. Marine pollution Bulletin, 77(1-2), 349-354.
27- Hammer J., Kraak M.H. & Parsons J.R., 2012 Plastics in the marine environment: the dark side of a modern gift. Reviews of Environmental Contamination and Toxicology, 220, 1-44.
28- Eerkes-Medrano D., Thompson R.C. & Aldridge D.C., 2015 Microplastics in freshwater systems: a review of the emerging threats, identification of knowledge gaps and prioritisation of research needs. Water Research, 75, 63-82.
29- Wagner M., Scherer C., Alvarez-Mu~noz D., Brennholt N., Bourrain X., Buchinger S., Fries E., Grosbois C., Klasmeier J., Marti T., Rodriguez-Mozaz S., Urbatzka R., Vethaak A., Winther-Nielsen M. & Reifferscheid G., 2014 Microplastics in freshwater ecosystems: what we know and what we need to know. Environmental Sciences Europe, 26 (1), 12.
30- Carr S.A., Liu J. & Tesoro A.G., 2016 Transport and fate of microplastic particles in wastewater treatment plants. Water Research, 91, 174–182.
31- Lares M., Ncibi M.C., Sillanpää M. & Sillanpää M., 2018 Occurrence, identification and removal of microplastic particles and fibers in conventional activated sludge process and advanced MBR technology. Water Research, 133, 236-246.
32- Murphy F., Ewins C., Carbonnier F. & Quinn B., 2016 Wastewater treatment works (WwTW) as a source of microplastics in the aquatic environment. Environmental Science & Technology, 50, 5800-5808.
33- Talvitie J., Heinonen M., Pääkkönen J.P., Vahtera E., Mikola A., Setälä O. & Vahala R., 2015 Do wastewater treatment plants act as a potential point source of microplastics? Preliminary study in the coastal Gulf of Finland, Baltic Sea. Water Science and Technology, 72, 1495-1504.
34- Magnusson K. & Norén F., 2014 Screening of microplastic particles in and down-stream a wastewater treatment plant, IVL Swedish Environmental Research Institute. No. C55.
35- Talvitie J., Mikola A., Koistinen A. & Setala, O., 2017 Solutions to microplastic pollution e Removal of microplastics from wastewater effluent with advanced wastewater treatment technologies, Water Research, 123, 401- 407.
36- Conley K., Clum A., Deepe J., Lane H. & Beckingham, B., 2019 Wastewater treatment plants as a source of microplastics to an urban estuary: Removal efficiencies and loading per capita over one year. Water Reseach X, 3, 1-9.
37- Environmental & Social Assessment for the Project Areas in the Cities of Rasht, Anzali, Sari & Babol, Project management unit international bank for reconstruction & development (IBRD), Ministry of Energy, Pars Ab Tadbir Consulting National Engineering services Engineering Company, 2005.
38- Nuelle M.T., Dekiff J.H., Remy D. & Fries E., 2014 A new analytical approach for monitoring microplastics in marine sediments. Environmental Pollution, 184, 161-169.
39- Rocha-Santos T. & Duarte A.C., 2015 A critical overview of the analytical approaches to the occurrence, the fate and the behavior of microplastics in the environment. Trends in Analytical Chemistry, 65, 47-53.
40- Alexander J., et al. 2016 Presence of microplastics and nanoplastics in food, with particular focus on seafood. EFSA Panel on Contaminants in the Food Chain (CONTAM). EFSA Journal, 14(6), 4501.
41- Liebezeit G. & Liebezeit E., 2014 Synthetic particles as contaminants in German beers. Food Additives& Contaminants: Part A, 31(9), 1574-1578.
42- Aalipour S., Hashemi S.H. & Alavian Petroody, S.S., 2018 Microplastic in carpet washing industry wastewater. Master thesis. Shahid Beheshti University (In Persian).