بررسی اثر جایگزینی بخشی از مصالح سنگی با ماسه ریخته گری بر خواص مکانیکی و دوام ملات تعمیری

نوع مقاله : پژوهشی اصیل (کامل)

نویسندگان
1 عضو هیئت علمی دانشکده مهندسی، گروه عمران، دانشگاه خورازمی
2 عضو هیئت علمی دانشکده مهندسی دانشگاه خوارزمی
3 دانشجوی کارشناسی ارشد دانشکده مهندسی گروه عمران دانشگاه خوارزمی
چکیده
تعمیر و نگهداری سازه ها در طول عمر سازه امری اجتناب ناپذیر می باشد. بنابراین استفاده از یک ماده تعمیری که قابلیت ارائه سرویس مجدد در زمان طولانی تری را داشته باشد، لازم می‌باشد. امروزه تولید یک ماده تعمیری که پیوستگی کامل با المان آسیب دیده داشته باشد و بر اساس مصالح موجود در کشور دارای صرفه اقتصادی نیز باشد، ضروری است. از طرف دیگر افزایش ضایعات صنعتی، کمبود فضای دفن زباله و افزایش هزینه‌های آن، بازیافت ضایعات صنعتی را به یک الزام تبدیل نموده است. یکی از این مواد زائد، ضایعات ماسه ریخته گری است که حاوی رزین، پودر ذغال و بنتونیت می باشد که قابل حل در آب بوده و باعث انتشار مواد شیمیایی خطرناک در محیط زیست می‌گردد. در این پژوهش نمونه‌های ملات و گروت با جایگزینی مقادیر مختلف ضایعات ماسه ریخته گری با ماسه با هدف بررسی اثر جایگزینی بر خواص این محصولات پایه سیمانی، ساخته شده است. نتایج نشان می‌دهد جایگزینی ضایعات ماسه ریخته گری کارایی ملات و گروت تا حدودی کاهش می‌دهد. در رابطه با خواص سخت شده، جایگزینی 20% از این ماده ضایعاتی باعث کمترین کاهش مقاومت فشاری ملات می گردد اما جایگزین 10% از این ماده باعث افزایش مقاومت فشاری گروت شده است. اثر این مواد بر مقاومت خمشی نیز تقریباً همانند تغییرات مقاومت فشاری بوده است. با توجه به نتایج تحقیق حاضر آزمایش فراصوت که بعنوان یک آزمایش کنترل کیفیت غیرمخرب برای مقاومت فشاری بتن بکار می رود، قابلیت تخمین مقاومت فشاری و خمشیِ ملات و گروت را ندارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Effect of replacement of Waste Foundry Sand with sand on mechanical properties and durability of repair mortar

نویسندگان English

Ali Katebi 1
Amir Masoud Salehi 2
Fatemeh Keshavarz 3
1 civil engineering group, Department of Civil Engineering, Kharazmi University, Tehran, Iran
2 Department of Engineering, Civil engineering group, Kharazmi University, Tehran, Iran
3 Master student of Civil engineering group, Engineering department of Kharazmi university
چکیده English

Maintenance and repair of structures during the life of the structure is inevitable. Therefore, using a repair material that have the ability to re-service in a longer time is necessary. Today, produce a repair material that has a complete bond with the damaged element and makes it economical based on the available materials in the country is necessary.On the other hand increasing the quantities of waste materials ,scarcity of land-filling space and because of its ever increasing cost,recycling industrial waste materials has become an attractive proposition to disposal.One of these by-products is waste foundry sand. Waste foundry sand that contains resin, coal powder and bentonite which are solvable in the water and leads to environmental pollution. Therefore, industry owners are looking for a solution to the problem of organic waste due to pressure from environmental organizations.One of these solutions is dumping of construction waste in cement products such as concrete, mortar and grout. In this research, with the aim of reaching mortar and grout with good performance and durability, as well as up to 40 MPa compressive strength of 28 days, the initial mixture ratios were determined and the final mixture was determined by making laboratory samples and correction of ratios. 5 mixtures for mortar and 5 maixtures for grout. In the mixtures for all mortar and grout samples, the ratio of water to cement is fixed at 0.4 and the cement content of the mortar samples is 650 kg/m3. Natural sand mortar samples have been replaced with 10, 15, 20 and 25 percent waste foundry sand. The amount of cement for grout samples is 1100 kg / m3. In grout mixtures, 10, 15, 20, and 25 percent of sand have been replaced by waste foundry sand (WFS). The results indicate that replacing WFS reduces the workability of mortar and grout. The compressive strength of the mortar samples is reduced by replacing different amounts of WFS at the age of 7 and 28 days. Mortar with 20% replacement of WFS, is the optimum percentage of waste sand in the mortar. However, the compressive strength of the grout samples increases by replacing 10% casting sand. By increasing the replacement value by more than 10%, the compressive strength decreases. Based on various studies in concrete, ultrasonic velocity test (as a non-destructive test) is used to estimate the compressive strength, which has a linear correlation between ultrasonic wave velocity and compressive strength. But the results of this study showed that the non-destructive test of ultrasonic waves does not have the ability to estimate the compressive strength and the flexural strength of the mortar. This result was also observed in Grout samples. Therefore based on the results of this research the ultrasonic velocity test does not have the capability to estimate the compressive and flexural strength of mortar and grout. Despite the decrease in the mechanical properties of the mortar by replacing WFS, the water absorption of the mortar containing this material has decreased, which is up to 15%. But by increasing the replacement percentage by up to 25%, the volumetric absorption of the samples of the grout decreases.

کلیدواژه‌ها English

Repair mortar
Waste foundry sand
Ultrasonic Pulse Velocity
mortar durability
[1] Ramezanianpour A.A., Moodi F., Bagheri M., Farajollahi M.M. Evaluate the performance of refined concrete by epoxy injection. 6th National Conference and 2nd International Conference on Materials and Structures in Civil Engineering, Yazd, Yazd University.2017. (In Persian)
[2] Arunachalam A, Jayakumar K . A review on the effect of industrial waste in concrete. The Indian Concrete Journal November 2015.
[3] Siddique R, Singh G. Utilization of waste foundry sand (WFS) in concrete manufacturing. Conservation and Recycling 55 (2011) 885– 892. [4] Patel, V. N. , & Shah, N.D. (2015). Suitability of Porcelain and Marble Industrial Waste Powder to Produce High Performance Concrete. American Journal of Civil Engineering and Architecture, 3(3), 59-63.
[4] Siddique R, Schutter Geert de, Noumowe A. Effect of used-foundry sand on the mechanical properties of concrete. Construction and Building Materials 2009;23(2):976–80.
[5] Guney Y, Sari YD, Yalcin M, Tuncan A, Donmez S. Re-usage of waste foundry sand in high strength concrete. Waste Management 2010;30:1705–13.
[6] Etxeberria M, Pacheco C, Meneses JM, Berridi I. Properties of concrete using metallurgical industrial by-products as aggregates. Construction and Building Material2010;24:1594–600.
[7] Siddique R, Aggarwal Y, Aggarwal P, Kadri EH, Bennacer B. Strength, durability, and micro-structural properties of concrete made with used-foundry sand (UFS).Construction and Building Materials 2011;25:1916–25.
[8] Siddique R. Utilization of industrial by-products in concrete. 2nd International Conference on Sustainable Civil Engineering Structures and Construction Materials 2014 (SCESCM 2014). Procedia Engineering 95, 335 – 347.
[9] Singh G, Siddique R. Effect of waste foundry sand (WFS) as partial replacement of sand on the strength,ultrasonic pulse velocity and permeability of concrete. Construction and Building Materials 26 (2012) 416–422.
[10] Aggarwal, Y., Siddique, R., 2014. Microstructure and properties ofconcrete using bottom ash and waste foundry sand as partial replacement of fine aggregates. Constr. Build. Mater. 54, 210–223.
[11] Jafarian M, Ameri M, Manafi S.The impact of factory waste foundry sand containing particles SF on the strength, durability and water absorption . First National Conference on Architecture and Civil Engineering ACC 2015. . (In Persian)
[12] Poorsharifi J.,Farrokhzad R.,Hazrati M., Keshavarz M. Use of Waste Foundry Sand and evaluation of its effects on concrete specification. National Conference on Civil and Environmental Engineering, Qazvin, Research Deputy of Faculty of Civil Engineering and Mapping, Islamic Azad University, Qazvin.2015. (In Persian)
[13] Huda, Sumaiya B., and M. Shahria Alam., "Mechanical and Freeze-Thaw Durability Properties of Recycled Aggregate Concrete Made with Recycled Coarse Aggregate." Journal of Materials in Civil Engineering (2015): 04015003
[14] Amiri M, Majroohi Sardrood J.Self-repairing concrete A suitable replacement for repairing concrete in traditional ways. Second International Conference on Civil Engineering, Architecture and Crisis Management, Tehran, Allameh Majlesi University.2017. (In Persian)
[15] ASTM C 150/C 150M – 17, Standard Specification for Portland Cement, ASTM International,2017.
[16] ASTM C136 / C136M-14, Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates and Coarse Aggregates, ASTM International, West Conshohocken, PA, 2014.
[17] ASTM E1621-13, Standard Guide for Elemental Analysis by Wave length Dispersive X-Ray Fluorescence Spectrometry, ASTM International, West Conshohocken, PA, 2013.
[18] ASTM C 109/C 109M – 02, Standard Test Method for Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens), ASTM International,2002
[19] ASTM C 293 – 02, Standard Test Method for Flexural Strength of Concrete (Using Simple Beam With Center-Point Loading), ASTM International,2002.
[20]General technical specification of construction work [Standard] / Strategic oversight supervisor, Office of Technical and Executive Management; Journal No. 55, 1393. (In Persian)
[21] Neville A.M., Brooks J.J. 2010, Neville Concrete Technology; Translators: Ali Akbar Ramezanianpour, Mohammad Reza Shah Nazari - Tehran: Azarang, 2005.(In Persian)
[22] ASTM C230 / C230M – 14,Standard Specification for Flow Table for Use in Tests of Hydraulic Cement.
[23] Jefferis, S.A. (2003) Proceedings of the Third International Conference, Granting and Ground Treatment, American Society of Civil Engineers, New Orleans.
[24] ASTM C 597 – 02, Standard Test Method for Pulse Velocity Through Concrete, ASTM International,2002.
[25] BS 1881-122,Testing Concrete Method for Determination of Water Absorbtion,2011.