استفاده از روش میانگین‌گیری به‌منظور استخراج ویژگی‌های دینامیکی سازه‌ها با پردازش تصویر

نوع مقاله : پژوهشی اصیل (کامل)

نویسندگان
1 دانشکده مهندسی عمران، دانشگاه تربیت دبیر شهید رجایی تهران
2 دانشیار، دانشکده مهندسی عمران، دانشگاه تربیت دبیر شهید رجایی تهران
چکیده


خصوصیات دینامیکی سازه ­ها، مانند فرکانس طبیعی، شکل مودها و نسبت‌های میرایی، نقش تعیین‌کننده‌ای در رفتار سازه در برابر بارهای دینامیکی مانند زمین­ لرزه ایفا می­ کنند. یکی از کاربردهای این خصوصیات تعیین نیروهای زمین‌لرزه‌ای است که برسازه ­ها اعمال می‌شود. از کاربردهای دیگر این ویژگی ­ها می‌توان به‌روزرسانی مدل اجزا محدود، تشخیص آسیب در سازه‌ها و پایش سلامت درازمدت سازه­ ها نام برد. دقت و کاهش هزینه ارزیابی این خواص، نقش مهمی در افزایش بهره ­وری و درنتیجه عمر مفید سازه­ ها ایفا می‌کند. هدف از این مقاله ارائه یک روش جدید برای افزایش دقت سنجش جابجایی­ های از راه دور از طریق پردازش تصویر است. برای این منظور، یک تیر یکسر گیردار آلومینیومی و یک قاب سه‌طبقه با وزن اضافی در نظر گرفته‌شده است. در پایه سازه ­ها با استفاده از چکش ضربه واردشده و سپس لرزش آن‌ها با استفاده از پردازش تصویر ضبط‌شده است. برای استخراج خواص دینامیک روش جستار قله مورداستفاده قرار گرفت و روش میانگین پیشنهادی بر روی آن‌ها اعمال گردید. دقت روش جدید با مقایسه خواص لرزه‌ای با نتایج حاصل از سانسورهای شتاب سنج و روش المان محدود مقایسه گردیده است. نتایج نشان می‌دهد که این روش می‌تواند دقت روش پردازش تصویر را بهبود بخشد.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Utilizing an average method to extract the dynamic properties of structures with image processing

نویسندگان English

amin havaran 1
Mussa Mahmoudi 2
1 Faculty of Civil Engineering , Shahid Rajaie Teacher Training University, Tehran, Iran
2 Faculty of Civil Engineering , Shahid Rajaie Teacher Training University, Tehran, Iran.
چکیده English

Dynamic properties of structures, such as natural frequency, shape modes, and damping ratios, play a decisive role in structure behavior against dynamic loads like earthquakes. Determining the earthquake forces imposed on structures based on the design spectra is one of the utilization of these properties. Other applications of these features could be utilized to update the finite element model, detect potential damage in structures, long-term health monitoring of structures, and evaluating the safety of structures after heavy loading. Therefore, accuracy and reducing the cost of extracting these properties would have a significant role in improving the efficiency and consequently of the useful life of structures. In other word, the more accurate of structural dynamic properties means, the more accurate determination of the seismic response of the structures. These properties depend on a great deal of detail, such as material behavior and the geometry of the structure, which could not be easily simulated in analytical models. So, performing seismic tests on structures is the most reliable method for obtaining these properties. Determination of these properties have been done in a variety of ways. However, various methods have been developed in many studies to extract these quantities by image processing. The aim of this article is presenting a novel approach to increase the accuracy of remote sensing by image processing. Therefore, the current paper is an attempt to apply the average method to improve efficiency as a cheaper method for obtaining the dynamic properties of structures. For this purpose, a cantilever aluminum beam and a Three-story frame with additional mass have been considered, and the commercial camera captures the vibration of the structure. The extracted displacements of each four points on the edge of the specimen are recorded as the input signals of the system. With two numerical derivatives of these displacements, the acceleration of the structure is obtained. Peak survey method utilized to extract natural frequencies, damping ratios, and mode shapes of the each selected point. The averaging method applied to calculate the final properties of the structure.

At last, the results are compared with the values ​​obtained from the acceleration sensors embedded on the structure and the finite element results. Then the accuracy and error of the algorithm are evaluated. However, these results could be utilized as the input information in the health-monitoring of the structures. The results show that the novel method did not improve the accuracy of the first three natural frequencies modes of vibration in comparison with the standard method for the cantilever beam. It is also observed that the new method wouldn’t make a significant difference in the calculation of damping ratios of the system. On the other hand, although the existence of cables and sensors would reduce the accuracy of image processing and recorded displacements, the new algorithm improves the estimation of the first three shapes modes. In the same way, the same function was performed for the Three-story frame structure. Although its natural frequencies did not change for the first three modes of vibration, the mode shapes are closer to the values ​​obtained from the accelerometer sensors.

کلیدواژه‌ها English

Image processing
average method
dynamic properties
natural dynamic frequency
shape mode
1. Zhang J, Prader J, Grimmelsman KA, Moon F, Aktan AE, Shama A. Experimental Vibration Analysis for Structural Identification of a Long-Span Suspension Bridge. Journal of Engineering Mechanics. 2013;139(6):748-59.
2. Baqersad J, Poozesh P, Niezrecki C, Avitabile P. Photogrammetry and optical methods in structural dynamics – A review. Mechanical Systems and Signal Processing. 2016.
3. Olaszek P. Investigation of the dynamic characteristic of bridge structures using a computer vision method. Measurement. 1999;25(3):227-36.
4. Hong-yu W, Hong-dong L, Xiu-qing Y, Wei-kang G. TRAINING A NEURAL NETWORK FOR MOMENT BASED IMAGE EDGE DETECTION. Journal of Zhejiang University(SCIENCE). 2000;1(4):398-401.
5. Patsias S, Staszewskiy WJ. Damage Detection Using Optical Measurements and Wavelets. Structural Health Monitoring. 2002;1(1):5-22.
6. Poudel UP, Fu G, Ye J. Structural damage detection using digital video imaging technique and wavelet transformation. Journal of Sound and Vibration. 2005;286(4-5):869-95.
7. Matsuzaki Y, Ji Y, Chang CC. Identification of structural dynamic behavior for the continuous system based on videogrammetric technique. 2006;6173:61731I.
8. Tomizuka M, Chang CC, Yun C-B, Giurgiutiu V. From photogrammetry, computer vision to structural response measurement. 2007;6529:652903.
9. Ji YF, Chang CC. Nontarget Image-Based Technique for Small Cable Vibration Measurement. Journal of Bridge Engineering. 2008;13(1):34-42.
10. Kim S-W, Kim N-S. Dynamic characteristics of suspension bridge hanger cables using digital image processing. NDT & E International. 2013;59:25-33.
11. Bartilson DT, Wieghaus KT, Hurlebaus S. Target-less computer vision for traffic signal structure vibration studies. Mechanical Systems and Signal Processing. 2015;60-61:571-82.
12. Pai PF, Feng D, Duan Y. High-Fidelity Camera-based Method for Noncontact Vibration Testing of Structures. 2013.
13. Chen JG, Wadhwa N, Cha Y-J, Durand F, Freeman WT, Buyukozturk O. Modal identification of simple structures with high-speed video using motion magnification. Journal of Sound and Vibration. 2015;345:58-71.
14. Encyclopedia WTF. Wikipedia The Free Encyclopedia Image processing 2013 [Available from: http:// fa.wikipedia.org/wiki/ Image processing.
15. Strang G. Linear Algebra and Its Applications: Brooks Cole; 2006.
16. Gonzalez RC, Woods RE. Digital image processing. Upper Saddle River, New Jersey: Pearson Education, Inc; 2002.
17. Timothy K S, Rong-chi C. Super-resolution inpainting. Journal of Zhejiang University-SCIENCE A. 2005;6(6):487-91.
18. Ljung L. System Identification: Theory for the User. Englewood Cliffs, New Jersey: Prentice-Hall Inc; 1987.
19. Anderson P, Brinker R, Peeters B, De Roeck G, L. H, Watures T. Comparison of System Identification Methods Using Ambient Bridge Test Data. In Proceeding of ISMA 23, the International Conference on Noise and Vibration Engineering; K.U. Leuvan , Belgium1998.
20. FELBER AJ. DEVELOPMENT OF A HYBRID BRIDGE EVALUATION SYSTEM. Vancouver, Canada: The University of British Columbia; 1993.
21. Kim BH, Stubbs N, Park T. A new method to extract modal parameters using output-only responses. Journal of Sound and Vibration 2005;282 215–30.
22. Ewins DJ. Modal Testing_ Theory and Practice (Mechanical engineering research studies: Research Studies Press Ltd; 1984.