بررسی اثر استفاده از شورآبه زیرزمینی و زئولیت بر مقاومت فشاری بتن غیرمسلح (مطالعه موردی: اراضی خشک شمال و غرب استان گلستان)

نوع مقاله : پژوهشی اصیل (کامل)

نویسندگان
1 گروه مهندسی آب، واحد گرگان، دانشگاه آزاد اسلامی، گرگان، ایران
2 گروه عمران، واحد گرگان، دانشگاه آزاد اسلامی، گرگان، ایران
چکیده
به دلیل مجاورت به دریا، شرایط زمین­شناسی و ویژگی­های هیدروژئولوژی مناطق شمالی و غربی استان گلستان، آب زیرزمینی در این منطقه بسیار شور است. از سوی دیگر، به دلیل عدم دسترسی به آب سطحی با کیفیت مناسب در اغلب ماه­های سال، انجام فعالیت­های عمرانی و ساختمانی در این منطقه همواره با چالش­هایی همراه است. بر این اساس، پژوهش حاضر با هدف بررسی 120 تیمار دربرگیرنده سه سطح کیفیت آب (شامل آب شهری، شورآبه زیرزمینی و ترکیب آب شهری و شورآبه زیرزمینی با نسبت برابر)، چهار سطح زئولیت (شامل کاربرد 0، 10، 20 و 30 درصد زئولیت به جای سیمان در طرح اختلاط)، دو سطح مصالح سیمانی (شامل 250 و 350 کیلوگرم بر مترمکعب) و پنج سن اندازه­­گیری مقاومت فشاری (3، 7، 21، 56 و 90 روز) در سه تکرار صورت گرفت. نظر به تنوع قابل ملاحظه تیمارهای آزمایش در این پژوهش و با توجه به عدم تجزیه و تحلیل­های آماری در پژوهش­های قبلی، نتایج پژوهش حاضر در قالب طرح کاملاً تصادفی به صورت آزمایش فاکتوریل تحت آزمون­های تجزیه واریانس (ANOVA) و مقایسه میانگین­ها (LSD) قرار گرفت. نتایج نشان داد که امکان استفاده از شورآبه زیرزمینی و زئولیت در طرح اختلاط بتن به ویژه در عیار سیمان 350 کیلوگرم بر مترمکعب بدون آن که موجب کاهش معنی­دار مقاومت فشاری بتن گردد، و حتی این ویژگی را در برخی شرایط به طور معنی­داری افزایش دهد، وجود دارد. با این حال، با توجه به وجود برهمکنش سه­گانه این عوامل که به معنای اثرات متفاوت نوع آب و درصد زئولیت در عیارهای مختلف سیمان است، انتخاب بهترین سطح کاربرد زئولیت و نوع آب با توجه به عیار سیمان مورد نظر باید بر اساس آزمون طرح اختلاط در کارگاه به دست آید.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

The effect of briny groundwater and zeolite on compressive strength of plain concrete (case study: northern and eastern dry regions of Golestan province)

نویسندگان English

kami kaboosi 1
mehran fadavi 2
ehsan Setaiesh 2
1 Department of Water Engineering, Gorgan branch, Islamic Azad University, Gorgan, Iran
2 Department of Civil Engineering, Gorgan branch, Islamic Azad University, Gorgan, Iran
چکیده English

Global water scarcity and air pollution by greenhouse gases have amplified the need to use of unconventional water and environmental friendly materials in the concrete industry. Because of its proximity to the Caspian sea, the geological conditions and hydrogeological characteristics of the northern and western regions of Golestan province, groundwater in this area is very salty. On the other hand, due to lack of access to good quality surface water in most of the months, civil and construction activities in this area are always challenging. Accordingly, the present study was conducted to investigate 120 treatments (including three levels of water quality including tap water, briny grounwater and mixture of equal ratio of tap water and briny grounwater), four levels of zeolite (including 0, 10, 20 and 30 percent of zeolite application instead of cement in the concrete mix design), two levels of cement content (including 250 and 350 kg.m-3) and five curing ages (including 3, 7, 21, 56 and 90 days) in three replications. Considering the considerable types of the experimental treatments in this study and in respect to the lack of statistical analysis in previous studies, the results of this study were analyzed based on a completely randomized design with factorial experiment using analysis of variance (ANOVA) and means comparison (LSD) tests. Averagely, use of briny groundwater resulted insignificant increase in the compressive strength of concrete specimens compared to tap water, while combined water significantly decreased this property, but this reduction was within permissible range 10 percent based on national and international standards. Also, replacement of 10, 20 and 30 percent of cement by zeolite compared to non-zeolite treatment significantly reduced the compressive strength of concrete specimens by 9.9, 9.5 and 23.1 percent, respectively, but the difference between replacement level 10 and 20 percent was not significant. However, Concurrent use of briny groundwater and zeolite up to 20% can be recommended without significantly reducing the compressive strength of concrete. In the cement content of 250 kg.m3, the difference between tap water and combined water treatments was not significant, but the use of briny groundwater resulted significance increase in compressive strength of concrete pieces by 22.8 and 21.8 percent compared to tap water and combined water, respectively. In contrast, in the cement content of 350 kg.m-3, the highest compressive strength was obtained in samples made with tap water, briny groundwater and combined water, respectively, and the differences between them were statistically significant. The results showed that due to double and triple interaction of these three factors on compressive strength of cement pieces, which means different effects of water quality and application percent of zeolite on different content of cement, the choice of the best application level of zeolite and water type according to the cement content should be selected based on the mix design test in building site. However, using of briny grounwater and zeolite in the concrete mix design, especially in cement content of 350 kg.m-3, without significantly reducing the compressive strength of concrete and even significantly increase of this property in some treatments, is recommended.

کلیدواژه‌ها English

Cement content
Curing age
mix design
Unconventional water
[1] Al-Joulani N. M. A. 2015 Effect of wastewater type on concrete properties. International Journal of Applied Engineering Research, 10(19), 39865-39870.
[2] Fattah K. P., Al-Tamimi A.K., Hamweyah W. & Iqbal F. 2017 Evaluation of sustainable concrete produced with desalinated reject brine. International Journal of Sustainable Built Environment, 6, 183-190.
[3] Ghrair A. M., Al-Mashaqbeh O. A., Sarireh M. K., Al-Kouz N., Farfoura M. & Megdal S. B. 2016 Influence of grey water on physical and mechanical properties of mortar and concrete mixes. Ain Shams Engineering Journal, Published online: doi.org/10.1016/j.asej.2016.11.005
[4] Wegian F.M. 2010 Effect of seawater for mixing and curing on structural concrete. The IES Journal Part A: Civil & Structural Engineering, 3(4), 235-243.
[5] Shi Z., Shui Z., Li Q. & Geng, H. 2015 Combined effect of metakaolin and sea water on performance and microstructures of concrete. Construction and Building Materials, 74, 57-64.
[6] Mbadike E. M. & Elinwa A. U. 2011 Effect of salt water in the production of concrete. Nigerian Journal of Technology, 30(2), 105-110.
[7] El-Nawawy O. A. & Ahmad S. 1991 Use of treated effluent in concrete mixing in an arid climate. Cement and Concrete Composites, 13, 137-141.
[8] Valipour M., Yekkalar M. Shekarchi M. & Panahi S. 2014 Environmental assessment of green concrete containing natural zeolite on the global warming index in marine environments. Journal of Cleaner Production, 65, 418-423.
[9] Madandoust R., Sobhani J. & Ashoori P. 2013 Concrete made with zeolite and metakaolin: a comparison on the strength and durability properties. Asian Journal of Civil Engineering (BHRC), 14(4), 533-543.
[10] Najimi M., Sobhani J., Ahmadi B. & Shekarchi M. 2012 An experimental study on durability properties of concrete containing zeolite as a highly reactive natural pozzolan. Construction and Building Materials, 35, 1023-1033.
[11] Khoshroo M., Shirzadi Javid A. A. & Katebi A. 2018 Effects of micro-nano bubble water and binary mineral admixtures on the mechanical and durability properties of concrete. Construction and Building Materials, 164, 371-385.
[12] Sabet F. A., Libre N. A. & Shekarchi M. 2013 Mechanical and durability properties of self consolidating high performance concrete incorporating natural zeolite, silica fume and fly ash. Construction and Building Materials, 44, 175-184.
[13] Valipour M., Pargar F., Shekarchi M. & Khani S. 2013 Comparing a natural pozzolan, zeolite, to metakaolin and silica fume in terms of their effect on the durability characteristics of concrete: A laboratory study. Construction and Building Materials, 41, 879-888.
[14] Soltani A., Tarighat A. & Rostami R. 2017 Effects of calcined clay minerals and silica fume on the compressive strength of concrete. Journal of Structural and Construction Engineering, 4(1), 33-50. (In Persian)
[15] Ranjbar M., Madandoust R. & Mousavi S. 2013 Combined effect of silica fume and zeolite on the fresh and hardened properties of self-compacted concrete. Concrete Research, 6(1), 53-71. (In Persian)
[16] Esmaeilnia Omran M. & Faridi M. 2015 Relationship between compressive strength and tensile strength, and modulus of elasticity in self compacting concrete containing recycled aggregates and natural zeolite. Concrete Research, 7(1), 7-22. (In Persian)
[17] Al-Jabri K. S., Al-Saidy A. H., Taha R. & Al-Kemyani A. J. 2011 Effect of using wastewater on the properties of high strength concrete. Procedia Engineering, 14, 370-376.
[18] APHA. 2012 Standard methods for examination of water and wastewater. American Public Health Association, 18th Edition, Washington DC.
[19] INSO 4977. 2015 Aggregates- sieve analysis of fine and coarse aggregates- test method. 1st revision.
[20] INSO 302. 2015 Concrete aggregates- specifications. 3st revision.
[21] INSO 581. 2014 Concrete- making and curing concrete test specimens in laboratory- code of practice. 1st revision.
[22] INSO 3201-1. 2009 Fresh concrete- part 1: sampling. 1st revision.
[23] INSO 3206. 1992 Concrete- determination of compressive strength of test specimens. 1st revision.
[24] EPA. 2012 Guidelines for water reuse. EPA/600/R-12/618, Washington, D.C.
[25] Iranian Budget and Planing Organization, 2004 Iranian concrete code (ABA). No. 120, 434p. (In Persian)
[26] INSO 14748, 2012 Mixing water for concrete. 1st Edition. (In Persian)
[27] ASTM C1602. 2012 Standard specification for mixing water used in the production of hydraulic cement concrete, ASTM International, West Conshohocken, PA, www.astm.org
[28] BS EN3148. 1980 Method of test for water for making concrete (including notes on the suitability of the water). British Standard Institution.
[29] Babu G.R. & Ramana N. V. 2018 Feasibility of wastewater as mixing water in cement. Materials Today: Proceedings, 5, 1607-1614.
[30] Iranian Budget and Planing Organization, 2004. Commentary of the concrete code of Iran (ABA). (In Persian)
[31] BS EN1008. 2002 Mixing water for concrete: Specification for sampling, testing and assessing the suitability of water, including water recovered from processes in the concrete industry, as mixing water for concrete. British Standard Institution, www.bsigroup.com
[32] Mehrdadi N., Akbarian A. & Hagh Elahi A. 2009 Using treated domestic wastewater in concrete mixing. Journal of Environmental Studies, 35(50), 129-136. (In Persian)
[33] Babu G. R., Reddy B. M. & Ramana N. V. 2018 Quality of mixing water in cement concrete: A review. Materials Today: Proceedings, 5: 1313-1320.
[34] Vejmelková E., Ondráček M. & Černý R. 2012 Mechanical and hydric properties of high performance concrete containing natural zeolites. International Journal of Materials and Metallurgical Engineering, 6(3), 186-189.