بهینه‌سازی قاب فولادی خمشی تحت بار زلزله و با در نظر گرفتن قیود آسیب احتمالی

نوع مقاله : پژوهشی اصیل (کامل)

نویسندگان
1 استادیار دانشگاه ولی عصر (عج) رفسنجان، ایران
2 استادیار گروه مهندسی عمران، دانشگاه ولیعصر (عج) رفسنجان
3 دانشجوی کارشناسی ارشد مهندسی عمران – سازه ، دانشگاه ولیعصر (عج) رفسنجان
چکیده
چکیده- فلسفه سنتی طراحی لرزه ای سازه ها بر مبنای نیروی اینرسی ناشی از زلزله در حال جایگزینی با فلسفه طراحی احتمالی بر مبنای عملکرد می­باشد که در این دیدگاه منحنی­های شکنندگی نقش مهمی را دارا هستند. منحنی­های شکنندگی بیانگر احتمال ایجاد سطحی از آسیب (حالت حدی) در برابر تاثیر شدتی از زلزله (پارامتر شدت) می باشند. در این مقاله مسئله بهینه سازی وزن سازه با لحاظ نمودن قیود احتمالی (احتمال فروریزش هدف) بررسی شده است. به این منظور، و برای عملی نمودن حل مسئله بهینه سازی، احتمال فروریزش سازه نمونه با استفاده از شبکه عصبی مصنوعی آموزش دیده پیش بینی شده است. علاوه بر قید احتمال فروریزش سازه؛ قیود تعینی (شامل ماکزیمم تنش و ماکزیمم تغییر مکان نسبی) با استفاده از تحلیل ماتریسی سازه مورد مطالعه، در مسئله بهینه سازی دخیل شده اند. بهینه سازی وزن سازه با استفاده از الگوریتم ژنتیک صورت گرفته شده است. در نهایت اثر مقدار احتمال فروریزش هدف، بر حاکم بودن معیار در سازه بهینه به دست آمده بررسی شده است. نتایج نشان می­دهند که با در نظر گرفتن احتمال فروریزش بیش از 10% برای سازه نمونه مورد مطالعه معیارهای تعینی حاکم بر وزن سازه بهینه خواهند بود و برای احتمال فروریزش هدف کمتر از این مقدار، قید آسیب احتمالی حاکم بر طرح نهایی خواهد بود.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Steel moment-resisting frame optimization considering seismic effects and probabilistic constraints

نویسندگان English

Ehsan Khojastehfar 1
Seyed Sadegh Naseralavi 2
Mohammad Papi 3
1 Assistant Professor, Vali-e-Asr University of Rafsanjan, Iran
2 Assisstant Prof., Civil Engineering Department, Vali-e-Asr University of Rafsanjan
3 M.Sc student of structural engineering, Civil Engineering Department, Vali-e-Asr University of Rafsanjan
چکیده English

Abstract:

Force-based seismic design, as the conventional earthquake resistant design philosophy, is going to be replaced with probabilistic performance-based design methodology. Through this method, induced damages against various levels of strong ground motions, play a dominant role. Seismic-induced damages are characterized by probabilistic damage functions, namely fragility curves. Fragility curves show the probability of exceeding damage levels (i.e. limit states) conditioned on strong ground motion intensities (i.e. Intensity Measures). Amongst well-known limit states (such as Immediate Occupancy, Life Safety and Collapse Prevention) for which the structure is to be checked, sidesway collapse limit state is of the greatest importance owing to the large amount of triggered losses during past earthquakes. Incremental Dynamic Analysis (IDA) method is the most popular method to achieve fragility curves for variuos limit states. By this methodology, the structure is affected by increasing levels of ensemble of strong ground motions. For each ground motion, the intensity which causes the instability of finite element model of the structure presents the collapse points. Fitting log-normal probability distribution to achieved intensities presents collapse fragility curve. The structure is to be checked against sidesway collapse in such a way that the probability of collapse for design-level seismic hazard is less than the pre-defined allowable probability.

Optimization of structures is aimed to present the topology, shape of structures and size structural sections in such that minimum target function (mostly structural weight) is achieved, while variuos design constraints are satisfied. Size optimization of structural members has been accomplished through previuos researches applying gravity and equivalent lateral forces. Besides to achieve optimum structures applying realistic effects of earthquakes, number of researches applied time history analysis of structures against one earthquake record or mean of number of earthquake records. To involve effects uncertainties regarding strong ground motions, probabilistic damage margins must be included in optimization constraints. To achieve this goal, in this paper, weight optimization of structres considering probabilistic constraints (represented by target collapse probability) is investigated. To achieve an efficient algorithm, the collapse fragility curve of structure is predicted by trained neural network. The network is trained based on incremental dynamic analysis of simulated models of samped structure. Besides probabilistic constraint regarding collapse probability margin, maximum normal stress and inter-story drift ratio (as deterministic constraints) are involved. Deterministic constraints are calculated by matrix analysis of the structure. Genetic algorithm is applied to solve the optimization problem. Finally, effects of target collapse probability on optimum weight are examined.

Achieved results show that the probabilistic constraint coverns the optimization problem if the target probability of collapse is less than 10%. Beyond this value, deterministic constraints, which are maximum normal stress and interstory drift ratio governs the optimum weight of the sampled structure.

کلیدواژه‌ها English

Probabilistic performance based design
Collapse fragility curves
size optimization
artificial neural networks
Incremental dynamic analysis
[1] Cornell, C.A., Jalayer, F., Hamburger, R.O. and Foutch, D.A., 2002. Probabilistic basis for 2000 SAC federal emergency management agency steel moment frame guidelines. Journal of structural engineering, 128(4), pp.526-533.
[2] Cornell, C.A. and H. Krawinkler, Progress and challenges in seismic performance assessment. PEER center news, 2000. 3(2): p. 1-3.
[3] Gholizadeh, S. and H. Poorhoseini, Seismic layout optimization of steel braced frames by an improved dolphin echolocation algorithm. Structural and Multidisciplinary Optimization, 2016. 54(4): p. 1011-1029.
[4] Ganzerli, S., C. Pantelides, and L. Reaveley, Performance‐based design using structural optimization. Earthquake engineering and structural dynamics, 2000. 29(11): p. 1677-1690.
[5] Rojas, H.A., S. Pezeshk, and C.M. Foley, Performance-based optimization considering both structural and nonstructural components. Earthquake Spectra, 2007. 23(3): p. 685-709.
[6] Wen, Y. and Y. Kang, Minimum building life-cycle cost design criteria. II: Applications. Journal of Structural Engineering, 2001. 127(3): p. 338-346.
[7] Hajirasouliha, I., K. Pilakoutas, and H. Moghaddam, Topology optimization for the seismic design of truss-like structures. Computers and Structures, 2011. 89(7): p. 702-711.
[8] Beck, J.L., et al., Multi-criteria optimal structural design under uncertainty. Earthquake Engineering and Structural Dynamics, 1999. 28(7): p. 741-762.
[9] Wyllie, L. A., and J. R. Filson. "Special supplement Armenia Earthquake reconnaissance report." Earthquake Spectra(1989): 1-175.
[10] Zareian, F., Krawinkler, H., Ibarra, L. and Lignos, D. (2010). Basic concepts and performance measures in prediction of collapse of buildings under earthquake ground motions. The Structural Design of Tall and Special Buildings, 19(1‐2), 167-181.
[11] Liel, A.B., Haselton, C.B., Deierlein, G.G. and Baker, J.W., 2009. Incorporating modeling uncertainties in the assessment of seismic collapse risk of buildings. Structural Safety, 31(2), pp.197-211.
[12] Ibarra, L. F. and Krawinkler, H. (2005). Global collapse of frame structures under seismic excitations. Berkeley, CA: Pacific Earthquake Engineering Research Center, Report No. 152
[13] Vamvatsikos, D. and Cornell, C. A. (2002). Incremental dynamic analysis. Earthquake Engineering and Structural Dynamics, 31(3), 491-514.
[14] Fragiadakis, M. and Papadrakakis, M., 2008. Performance‐based optimum seismic design of reinforced concrete structures. Earthquake Engineering and Structural Dynamics, 37(6), pp.825-844.
[15] Alimoradi, A., Pezeshk, S. and Foley, C.M., 2007. Probabilistic performance-based optimal design of steel moment-resisting frames. II: Applications. Journal of structural
engineering, 133(6), pp.767-776.
[16] Ibarra, L.F., Medina, R.A. and Krawinkler, H., 2005. Hysteretic models that incorporate strength and stiffness deterioration. Earthquake engineering and structural dynamics, 34(12), pp.1489-1511.
[17] Beheshti-Aval, S.B., Khojastehfar, E., Noori, M. and Zolfaghari, M.R., (2015). A comprehensive collapse fragility assessment of moment resisting steel frames considering various sources of uncertainties. Canadian Journal of Civil Engineering, 43(2), pp.118-131.
[18] Medina, R.A. and Krawinkler, H., (2004). Seismic demands for nondeteriorating frame structures and their dependence on ground motions. Pacific Earthquake Engineering Research Center, Report No. 144.
[19] Whitley, D., 1994. A genetic algorithm tutorial. Statistics and computing, 4(2), pp.65-85.
[20] Lignos, D., 2008. Sidesway collapse of deteriorating structural systems under seismic excitations. Doctoral dissertation Stanford university.
[21] Lagaros, N. D., Fragiadakis, M., Papadrakakis, M. and Tsompanakis, Y. (2006). Structural optimization: A tool for evaluating seismic design procedures. Engineering structures, 28(12), 1623-1633.‏
[22]. Gholizadeh, S., Salajegheh, J. and Salajegheh, E. (2009). An intelligent neural system for predicting structural response subject to earthquakes. Advances in Engineering Software, 40(8), 630-639.‏
[23] Gholizadeh, S., and Salajegheh, E. (2009). Optimal design of structures subjected to time history loading by swarm intelligence and an advanced metamodel. Computer Methods in Applied Mechanics and Engineering, 198(37-40), 2936-2949
[24] Hajirasouliha, I., Pilakoutas, K., and Moghaddam, H. (2011). Topology optimization for the seismic design of truss-like structures. Computers and Structures, 89(7-8), 702-711.‏
[25] Shinozuka, M., Feng, M. Q., Lee, J. and Naganuma, T. (2000). Statistical analysis of fragility curves. Journal of engineering mechanics, 126(12), 1224-1231
[26] Rajeev, S. and Krishnamoorthy, C. S. (1992). Discrete optimization of structures using genetic algorithms. Journal of structural engineering, 118(5), 1233-1250