توسعه توابع شکل و توابع پایه‌ی شعاعی جدید هنکل کروی در بهینه‌سازی توپولوژی‌ سازه به روش سطح تراز

نوع مقاله : پژوهشی اصیل (کامل)

نویسندگان
دانشگاه شهید باهنر کرمان
چکیده
در این مقاله، از توابع پایه هنکل کروی جهت بهینه­سازی توپولوژی سازه با استفاده از روش سطح تراز استفاده شده است. توابع پیشنهادی، ترکیبی از میدان توابع بسل نوع اول و دوم و همچنین میدان توابع چند جمله‌ای در فضای مختلط و برگرفته از توابع پایه‌ی شعاعی هستند. با استفاده از توابع هنکل کروی، وابستگی تابع مجموعه سطوح تراز به مکان و زمان از یکدیگر جدا گشته و این سبب تبدیل ‌شدن معادله دیفرانسیل با مشتقات جزئی همیلتون-ژاکوبی به یک معادله دیفرانسیل معمولی می­شود. بدین طریق، مشکلات ناشی از حل معادله دیفرانسیل با مشتقات جزئی برطرف شده و در نتیجه نیازی به مقداردهی مجدد تابع مجموعه سطوح تراز در فرایند بهینه‌سازی نمی‌باشد. در ادامه، جهت افزایش سرعت و دقت همگرایی در ایجاد طرح بهینه، توابع شکل هنکل کروی جایگزین توابع شکل کلاسیک لاگرانژ می‌شود. توابع شکل پیشنهادی علاوه بر ارضای خاصیت دلتای کرونکر و افراز واحد، بی‌نهایت مشتق‌پذیر بوده همچنین توابع پیشنهادی به لحاظ دارا بودن هر سه میدان توابع چند جمله‌ای، بسل نوع اول و دوم در فضای مختلط می‌تواند در بهبود دقت و سرعت همگرایی مؤثر باشند در حالی که در توابع شکل کلاسیک لاگرانژ تنها میدان توابع چند جمله­ای اغنا می­شود. در انتها چندین مثال عددی جهت بررسی عملکرد توابع پایه‌ی شعاعی هنکل کروی و توابع شکل هنکل کروی بیان ‌شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Development of Novel Spherical Hankel Shape and Radial Basis Functions in Structural Topology Optimization by Level Set Method

نویسندگان English

Faezae Mordouei
Saeed Shojaee
Saleh Hamzehei-Javaran
Shahid Bahonar University of Kerman
چکیده English

Shape and topology optimization have become one of the main researches that is widely used in engineering fields. The purpose of topology optimization is to find an appropriate (optimal) distribution of materials in the design domain so that the shape and number of voids is optimized and the objective function is minimized or maximized. In recent decades, noticeable researches and various topology optimization methods were proposed. The level set method is being used successfully in structural shape and topology optimization. This method is an implicit method for moving interior and exterior boundaries, while these boundaries may join together during the process and new voids may be formed. The structural boundary is illustrated by the zero level set and nonzero in the domain. In the above context, the level set function is used as a switch to distinguish between the two domains present in the computing space. This way of illustration has an important feature by which the domain boundaries can be combined together or divided. By using the solution of Hamilton-Jacobi equation resulting from this function, the domain’s boundary starts to move. The control over movement of this boundary is done by velocity vector of Hamilton-Jacobi equation. Now, in order to use this method in topology optimization, it is sufficient to establish a relationship between velocity vector of Hamilton-Jacobi and shape derivation, which is used for optimizing objective function. It is possible to use standard level set for structural topology optimization.

In this paper, the spherical Hankel basis functions are used to optimize the structural topology using the level set method. The proposed functions are a combination of the first and second kind of Bessel functions fields as well as the polynomial ones in complex space and are derived from radial basis functions. Using the spherical Hankel functions, the dependence of the function of the level set method on the space and time is separated, which results in the transformation of the Hamilton-Jacobian partial differential equation into a conventional differential equation. In this way, the difficulties arising from solving partial differential equations are eliminated, and thus there is no need to re-set the function of the level set method in the optimization process. Further, in order to increase the speed and precision of convergence in creating an optimal design, the classic Lagrange shape functions are replaced with the spherical Hankel ones. The proposed shape functions have some properties such as infinite piecewise continuity, the Kronecker delta property, and the partition of unity. Moreover, since they satisfy all three polynomial fields and the first and second kind of Bessel ones in the complex space, they can be effective in improving the accuracy and speed of convergence, while the classic Lagrange shape functions are able to satisfy only the polynomial function fields. Finally, several numerical examples are presented to study the performance of the spherical Hankel radial basis and shape functions.

کلیدواژه‌ها English

Spherical Hankel radial basis functions
Spherical Hankel shape functions
Topology optimization
Level set method
[1] Manafi A. & Shojaee S. 2015 Optimization of two-way topology using soft removal method. The First International and 3rd National Conference on Architecture, Civil Engineering and Urban Environment. (In Persian).
[2] Manafi A. & Shojaee S. 2015 Evolutionary optimization of the developed topology and its combination with several issues. The First International and 3rd National Conference on Architecture, Civil Engineering and Urban Environment. (In Persian).
[3] Bendsøe M.P. & Kikuchi N. 1988 Generating optimal topologies in structural design using homogenization method. Computer Methods in Applied Mechanics and Engineering, 71, 197–224.
[4] Bendsøe M.P. 1989 Optimal shape design as a material distribution problem Structural Optimization, 1(4), 193-202.
[5] Bendsøe M.P. & Sigmund O. 2003 Topology Optimization: Theory, Methods, and applications. Springer, Berlin Heidelberg.
[6] Xie Y.M. & Steven G.P. 1993 A simple evolutionary procedure for structural optimization. Computers and Structures, 49(5), 885–896.
[7] Osher S. & Sethian J.A. 1998 Front propagating with curvature dependent speed: algorithms based Hamilton–Jacobi formulations. Journal of Computational Physics, 78, 12–49.
[8] Osher S. & Fedkiw R.P. 2002 Level set methods and dynamic implicit surface. Springer-Verlag, New York.
[9] Sethian J.A. 1999 Level set methods and fast marching methods: evolving interfaces in computational geometry, fluid mechanics, computer version and material science. Cambridge University Press, UK.
[10] Shojaee S. & Mohammadian M. 2010 Topology optimization using the alignment method. First National Conference on Structures - Earthquakes - Geotechnics. (In Persian).
[11] Sethian J.A. & Wiegmann A. 2000 Structural boundary design via level set and immersed interface methods. Journal of Computational Physics, 163, 489–528.
[12] Wang M.Y., Wang X.M. & Guo D.M. 2003 A level set method for structural topology optimization. Computer Methods in Applied Mechanics and Engineering, 192, 217–224.
[13] Wang M.Y. & Wang X.M. 2004 ‘Color’ level sets: a multi-phase method for structural topology optimization with multiple materials. Computer Methods in Applied Mechanics and Engineering, 193, 469–496.
[14] Shojaee S. & Mohammadian M. 2011 Piecewise constant level set method for structural topology optimization with MBO type of projection. Structural and Multidisciplinary Optimization, 44(4), 455-469.
[15] Wang S.Y.& Wang M.Y. 2006 Radial basis functions and level set method for structural topology optimization. International Journal of Numerical Methods in Engineering, 65(12), 2060-2090.
[16] Hamzeh Javaran S., Khaji N. & Moharrami H. 2011 A dual reciprocity BEM approach using new Fourier radial basis functions applied to 2D elastodynamic transient analysis. Engineering Analysis with Boundary Elements, 35, 85-95.
[17] Hamzeh Javaran S., Khaji N. & Noorzad A. 2011 First kind Bessel function (J-Bessel) as radial basis function for plane dynamic analysis using dual reciprocity boundary element method. Acta Mechanica, 218, 247-258.
[18] Hamzehei Javaran S. & Khaji N. 2013 New complex Fourier shape functions for the analysis of two-dimensional potential problems using boundary element method. Engineering Analysis with Boundary Elements, 37, 260-72.
[19] Hamzehei Javaran S. & Khaji N. 2014 Dynamic analysis of plane elasticity with new complex Fourier radial basis function in the dual reciprocity boundary element method. Applied Mathematical Modelling, 38, 3641-3651.
[20] Hamzehei Javaran S. & Shojaee S. 2017 The solution elastostatic and dynamic problems using the boundary element method based on spherical Hankel element framework. International Journal for Numerical Methods in Engineering,112,2067-2086.
[21] Farmani S., Ghaeini-Hessaroeyeh M. & Hamzehei Javaran S. 2018 The improvement of numerical modeling in the solution of incompressible viscous flow problems using finite element method based on spherical Hankel shape functions. International Journal for Numerical Methods in Fluids;87, 70–89.
[22] Hamzehei-Javaran S. & Shojaee S. 2018 Improvement of numerical modeling in the solution of static and transient dynamic problems using finite element method based on spherical Hankel shape functions. International Journal for Numerical Methods in Engineering, Accepted Paper, DOI: 10.1002/nme.5842.
[23] Hamzehei-Javaran S. 2018 Approximation of the state variables of Navier’s differential equation in transient dynamic problems using finite element method based on complex Fourier shape functions. Asian Journal of Civil Engineering, 19(4), 431-450.
[24] Manafi A. & Shojaee S. 2015 Optimization of the topology to optimize the natural frequency using the soft-kill BESO method. National Conference on Civil Engineering and demand oriented research. (In Persian).
[25] Nia A., Shojaee S. & Torkzadeh P. 2014 Optimization of continuous 3D environments using stress level analysis methods. 8th National Congress on Civil Engineering. (In Persian).
[26] Wang J.G. & Liu G.R. 2002 On the optimal shape parameters of radial basis functions used for 2-D meshless methods. Computer Methods in Applied Mechanics and Engineering, 191, 2611-2630.