یک مدل تحلیلی یکتا برای تیرهای پیوند کوتاه، میانی و بلند در قابهای مهاربندی شده ی واگرا

نوع مقاله : پژوهشی اصیل (کامل)

نویسندگان
1 دانشگاه صنعتی امیرکبیر
2 دانشگاه آزاد اسلامی واحد علوم و تحقیقات تهران
چکیده
هدف از انجام این پژوهش بسط و گسترش مدل تحلیلی یکتا برای پیش بینی رفتار الاستیک و غیرالاستیک تیرهای پیوند می­باشد، به نحوی که برای انواع مختلف تیر پیوند شامل تیر پیوند کوتاه، متوسط و بلند قابل استفاده باشد. هنگامی که قابهای مهاربندی شده­ی واگرا تحت اثر زلزله­های شدید قرار می­گیرند، تیرهای پیوند از خود رفتار غیرالاستیک نشان می­دهند، درحالیکه تیرهای خارج از ناحیه­ی تیر پیوند، ستون­ها و مهاربندها به نحوی طراحی شده­اند که در محدوده­ی الاستیک باقی بمانند. برای انجام تحلیل­های غیرخطی مناسب بر روی قابهای مهاربندی شده­ی واگرا، نیاز به مدلی تحلیلی می­باشد که بتواند با دقت زیادی رفتار غیرالاستیک تیرهای پیوند را پیش بینی کند. طبق اطلاع نویسندگان، در حال حاضر تنها برای تیرهای پیوند کوتاه مدل تحلیلی ارائه شده است. در این پژوهش یک مدل تحلیلی ارائه شده است که می­تواند با دقیت بسیار زیادی مقادیر بیشینه و همچنین مقادیر میانی نیروها و تغییر شکلهای تیرهای پیوند کوتاه، متوسط و بلند را پیش بینی کند. پارامترهای مدل بر اساس نتایج چندین آزمایش صورت گرفته بر روی تیرهای پیوند و قابهای مهاربندی شده­ی واگرا کالیبره شده­اند. مقایسه نتایج به دست آمده از مدل­سازی عددی با منحنی­های هیسترسیس آزمایشها نشان دهنده­ی دقت بسیار بالای مدل تحلیلی ارائه شده می­باشد. استفاده از مدل پیشنهادی جهت انجام تحلیل­های غیرالاستیک بر روی قابهای مهاربندی شده­ی واگرا توصیه می­شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

A unique analytical model for short, intermediate and long links in eccentrically braced frames

نویسندگان English

Saeed Erfani 1
Masood Nekooei 2
Amir Ashtari Larki 2
1 Amirkabir industrial university
2 Tehran science and research branch, Islamic azad university
چکیده English

The purpose of this study is to develop the previous proposed analytical model by the first and second authors for short links, so it can be used for all kinds of links including short, intermediate, and long links. Eccentrically braced frames (EBF) offer high lateral stiffness because of their braced configuration while also providing high ductility and energy dissipation. They are widely used as a lateral-force resisting system for multi-story buildings located in seismic areas. The key components of the EBF system include columns, collector beams, braces and active links. The active links are designed to provide ductility and energy dissipation through yielding under design basis earthquakes, while all other structural members are designed to be stronger than the links and stay in elastic range. The link is defined by a horizontal eccentricity between the intersection points of the two brace centerlines with the beam centerline. Sufficient analytical model which can accurately predict the inelastic performance of the links is needed to perform reliable nonlinear analyses of EBFs. Analytical models that are used to study the inelastic seismic response of the EBFs usually reflect the anticipated behavior of the different frame elements. Links are modeled as inelastic elements with concentrated end flexural and shear hinges. Beams outside of the link, braces, and columns are typically modeled as elastic beam-column elements, because no inelastic behavior is anticipated in design. Ricles and Popov proposed an analytical model for short links. Ramadan and Ghobarah replaced the sub-hinges with translational and rotational springs and proposed a new model. Both models had incorrect shear stiffness so that the shear stiffness of model was half the link shear stiffness. Richards and Uang corrected the shear stiffness of the model proposed by Ramadan and Ghobarah, and proposed a new analytical model for short links. Koboevic et al. proposed an analytical model based on the results of experimental test performed by Okazaki and Engelhardt, regardless of the fact that the actual measured dimensions of sections were different from the standard dimensions of sections. To account for this issue, despite of what is said in their paper, the strain-hardening ratio was set to 0.0045. For this reason, the shear stiffness of their proposed model was incorrect and the predicted shear forces are 15 to 24 percent more than the experimental shear forces. Ashtari and Erfani showed that available analytical models do not predict very well the maximum shear forces and deformations too, and proposed an analytical model which can accurately predict both maximum and intermediary values of shear force and deformation of short links. To the authors’ knowledge, currently there are only suitable analytical models for short links. In this study an analytical model which can accurately predict both maximum and intermediary values of forces and deformations for short, intermediate, and long links, is proposed. The parameters of model are established based on test results from several experiments on links and EBFs. Comparison of available test results with the hysteresis curves obtained using the proposed analytical model established the accuracy of the model. The proposed model is recommended to be used to perform inelastic analyses of EBFs.

کلیدواژه‌ها English

eccentrically braced frames
Short link
Intermediate link
Long link
analytical model
[1] Kanvinde, A.M., Marshall, K.S., Grilli, D.A. & Bomba, G. 2014 Forensic Analysis of Link Fractures in Eccentrically Braced Frames during the February 2011 Christchurch Earthquake: Testing and Simulation. Journal of Structural Engineering, 141(5), 04014146.
[2] Wang, F., Su, M., Hong, M., Guo, Y. & Li, S. 2016 Cyclic behavior of Y-shaped eccentrically braced frames fabricated with high-strength steel composite. Journal of Constructional Steel Research, 120, 176– 187.
[3] Xu, X., Zhang, Y. & Lou, Y. 2016 Self-centering eccentrically braced frames using shape memory alloy bolts and post-tensioned tendons. Journal of Constructional Steel Research, 125, 190–204.
[4] AISC 341 2016 Seismic provisions for structural steel buildings, American Institute of Steel Construction. Chicago, Illinois, USA.
[5] Richards, P.W. & Uang, C.M. 2006 Testing protocol for short links in eccentrically braced frames. Journal of Structural Engineering, 132(8), 1183-1191.
[6] Ohsaki, M. & Nakajima, T. 2012 Optimization of link member of eccentrically braced frames for maximum energy dissipation. Journal of Constructional Steel Research, 75 (2012) 38-44.
[7] Okazaki, T., Engelhardt, M.D., Hong, J.K., Uang, C.M. & Drolias, A. 2014 Improved Link-to-Column Connections for Steel Eccentrically Braced Frames. Journal of Structural Engineering, 141(8), 04014201.
[8] Koboevic, S., Rozon, J. & Tremblay, R. 2012 Seismic performance of low-to-moderate height eccentrically braced steel frames designed for North American seismic conditions. Journal of Structural Engineering, 138(12), 1465-1476.
[9] Ricles, J.M. & Popov, E.P. 1994 Inelastic link element for EBF seismic analysis. Journal of Structural Engineering, 120(2), 441-463.
[10] Ramadan, T. & Ghobarah, A. 1995 Analytical model for shear-link behavior. Journal of Structural Engineering, 121(11), 1574-1580.
[11] Okazaki, T. & Engelhardt M.D. 2007 Cyclic loading behavior of EBF links constructed of ASTM A992 steel. Journal of Constructional Steel Research, 63(6), 751-765.
[12] Ashtari, A. & Erfani S. 2016 An analytical model for shear links in eccentrically braced frames. Steel and Composite Structures, 22(3), 627-645.
[13] Lignos, D.G. & Krawinkler H. 2010 Deterioration modeling of steel components in support of collapse prediction of steel moment frames under earthquake loading. Journal of Structural Engineering, 137(11), 1291-1302.
[14] Kasai, K. & Popov, E.P. 1986 General behavior of WF steel shear link beams. Journal of Structural Engineering, 112(2), 362-282.
[15] Berman, J.W. & Bruneau, M. 2007 Experimental and analytical investigation of tubular links for eccentrically braced frames. Engineering Structures, 29(8), 1929-1938.
[16] Engelhardt, M.D. & Popov, E.P. 1992 Experimental performance of long links in eccentrically braced frames. Journal of Structural Engineering, 118(11), 3067-3088.