حذف نفتالن از محلول آبی با استفاده از نانو صفحات گرافن: مطالعات جذب بهینه و مدل‌سازی

نویسندگان
1 دانشگاه شهید بهشتی
2 هیات علمی دانشگاه دانشگاه شهید بهشتی
چکیده
هیدروکربن‌های آروماتیک چند حلقه‌ای مانند نفتالن به دلیل اثرات سرطان‌زایی و سمیت از ترکیبات خطرناک برای انسان و محیط‌زیست می‌باشند که حذف این آلاینده از محیط‌زیست امری ضروری به نظر میرسد. در این مطالعه نانو صفحات گرافن سنتز و برای حذف نفتالن از محلول آبی استفاده شد. ساختار این نانوجاذب با استفاده از آنالیز‌های پراش اشعه ایکس (XRD)، طیف‌سنج مادون قرمز (FTIR) و تصویر میکروسکوپ الکترونی روبشی (SEM) بررسی گردید. مطالعات جذب بهینه و بررسی کارایی نانوجاذب در حذف نفتالن از محلول آبی در سیستم ناپیوسته جذبی با بررسی تأثیر متغیرهای pH محلول (3-10)، دوز جاذب (01/0-2/0 گرم بر لیتر) و غلظت اولیه نفتالن (3-15 میلی‌گرم بر لیتر) مطالعه شد. فرآیند جذب با استفاده از مدل‌های ایزوترمیک لانگمیر و فروندلیچ و نیز مدل‌های سینتیکی شبه مرتبه اول، شبه مرتبه دوم، الوویچ و نفوذ درون‌ذره‌ای در شرایط بهینه مدل‌سازی گردید. نتیجه آزمایش‌های جذب نشان داد که شرایط بهینه در 10= pH، غلظت جاذب 13 میلی‌گرم بر لیتر و دوز جاذب برابر با 11/0 گرم بر لیتر به دست آمد و در این شرایط درصد حذف و ظرفیت جذب به ترتیب برابر با 19/80 درصد و 18/90 میلی‌گرم بر گرم حاصل شد. نتایج حاصل از بررسی ایزوترم و سینتیک جذب نشان داد که فرایند جذب از مدل ایزوترم فروندلیچ (97/0= R2) و مدل سینتیکی شبه مرتبه دوم (99/0= R2) تبعیت می‌کند. بر اساس نتایج مطالعه حاضر، نانو صفحات گرافن را می‌توان به‌عنوان جاذبی مؤثر برای حذف نفتالن از محلول‌های آبی به کار برد.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Naphthalene removal from aqueous solutions using Graphene nanosheets: Optimal absorption studies and modeling

نویسندگان English

A. Shahbazi 1
M.S. Niknam 1
M.M. Amini 2
چکیده English

Polycyclic Aromatic Hydrocarbons such as naphthalene are dangerous for humans and the environment due to their carcinogenic and toxic properties. Thus, removing these pollutants from the environment is necessary. In this study, Graphene NanoSheets (GNS) was synthesised and applied for the removal of naphthalene from aqueous solution. The structure of nano-adsorbent studied using Fourier Transform Infrared (FTIR), X-ray Diffraction (XRD) and Scanning Electron Microscope (SEM). Optimal absorption studies for naphthalene removal from aqueous solution has been carried out at batch technique under various experimental conditions including adsorbent dosage (0.01 - 0.2 g/l), pH of solution (3 - 10) and initial concentration of naphthalene (3 – 15 mg/l). The isotherm of adsorption data was analyzed using Langmuir and Freundlich models and the kinetic of adsorption data modeled in optimum conditions using Pseudo-first-order, Pseudo-second-order, Elovich and Intra-particle diffusion models. The optimum condition has been achieved in the pH=10, initial concentration 13 mg/l and the adsorbent dosage 0.11 g/l and in these conditions, the removal percentage and absorption capacity of naphthalene was obtained 80.19% and 90.18 mg/g, respectively. The results indicated that adsorption isotherm and kinetic followed Freundlich isotherm (R2=0.97) and pseudo-second-order kinetic (R2=0.99) models, respectively. According to present study GNS can be used as an efficient adsorbent for the naphthalene removal from aqueous solutions.Polycyclic Aromatic Hydrocarbons such as naphthalene are dangerous for humans and the environment due to their carcinogenic and toxic properties. Thus, removing these pollutants from the environment is necessary. In this study, Graphene NanoSheets (GNS) was synthesised and applied for the removal of naphthalene from aqueous solution. The structure of nano-adsorbent studied using Fourier Transform Infrared (FTIR), X-ray Diffraction (XRD) and Scanning Electron Microscope (SEM). Optimal absorption studies for naphthalene removal from aqueous solution has been carried out at batch technique under various experimental conditions including adsorbent dosage (0.01 - 0.2 g/l), pH of solution (3 - 10) and initial concentration of naphthalene (3 – 15 mg/l). The isotherm of adsorption data was analyzed using Langmuir and Freundlich models and the kinetic of adsorption data modeled in optimum conditions using Pseudo-first-order, Pseudo-second-order, Elovich and Intra-particle diffusion models. The optimum condition has been achieved in the pH=10, initial concentration 13 mg/l and the adsorbent dosage 0.11 g/l and in these conditions, the removal percentage and absorption capacity of naphthalene was obtained 80.19% and 90.18 mg/g, respectively. The results indicated that adsorption isotherm and kinetic followed Freundlich isotherm (R2=0.97) and pseudo-second-order kinetic (R2=0.99) models, respectively. According to present study GNS can be used as an efficient adsorbent for the naphthalene removal from aqueous solutions.Polycyclic Aromatic Hydrocarbons such as naphthalene are dangerous for humans and the environment due to their carcinogenic and toxic properties. Thus, removing these pollutants from the environment is necessary. In this study, Graphene NanoSheets (GNS) was synthesised and applied for the removal of naphthalene from aqueous solution. The structure of nano-adsorbent studied using Fourier Transform Infrared (FTIR), X-ray Diffraction (XRD) and Scanning Electron Microscope (SEM). Optimal absorption studies for naphthalene removal from aqueous solution has been carried out at batch technique under various experimental conditions including adsorbent dosage (0.01 - 0.2 g/l), pH of solution (3 - 10) and initial concentration of naphthalene (3 – 15 mg/l). The isotherm of adsorption data was analyzed using Langmuir and Freundlich models and the kinetic of adsorption data modeled in optimum conditions using Pseudo-first-order, Pseudo-second-order, Elovich and Intra-particle diffusion models. The optimum condition has been achieved in the pH=10, initial concentration 13 mg/l and the adsorbent dosage 0.11 g/l and in these conditions, the removal percentage and absorption capacity of naphthalene was obtained 80.19% and 90.18 mg/g, respectively. The results indicated that adsorption isotherm and kinetic followed Freundlich isotherm (R2=0.97) and pseudo-second-order kinetic (R2=0.99) models, respectively. According to present study GNS can be used as an efficient adsorbent for the naphthalene removal from aqueous solutions.

کلیدواژه‌ها English

Graphene NanoSheets
Polycyclic Aromatic Hydrocarbons
Optimal absorption
Isotherm
Kinetic
 [1]          Wang Z, Han Q, Xia J, Xia L, Ding M, Tang J. Graphene‐based solid‐phase extraction disk for fast separation and preconcentration of trace polycyclic aromatic hydrocarbons from environmental water samples. Journal of separation science. 2013;36(11):1834-42.
[2]           Srogi K. Monitoring of environmental exposure to polycyclic aromatic hydrocarbons: a review. Environmental Chemistry Letters. 2007;5(4):169-95.
[3]           Davila DR, Davis DP, Campbell K, Cambier JC, Zigmond LA, Burchiel SW. Role of alterations in ca2+‐associated signaling pathways in the immunotoxicity of polycyclic aromatic hydrocarbons. Journal of Toxicology and Environmental Health, Part A Current Issues. 1995;45(2):101-26.
[4]           Reynaud S, Deschaux P. The effects of polycyclic aromatic hydrocarbons on the immune system of fish: a review. Aquatic Toxicology. 2006;77(2):229-38.
[5]           Müncnerová D, Augustin J. Fungal metabolism and detoxification of polycyclic aromatic hydrocarbons: a review. Bioresource technology. 1994;48(2):97-106.
[6]           Changchaivong S, Khaodhiar S. Adsorption of naphthalene and phenanthrene on dodecylpyridinium-modified bentonite. Applied Clay Science. 2009;43(3):317-21.
[7]           Mastral AM, Callen MS. A review on polycyclic aromatic hydrocarbon (PAH) emissions from energy generation. Environmental Science & Technology. 2000;34(15):3051-7.
[8]           Rashed MN. Adsorption technique for the removal of organic pollutants from water and wastewater: INTECH Open Access Publisher; 2013.
[9]           Anbia M, Moradi SE. Adsorption of naphthalene-derived compounds from water by chemically oxidized nanoporous carbon. Chemical Engineering Journal. 2009;148(2):452-8.
[10] Sing KS. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure and applied chemistry. 1985;57(4):603-19.
[11]  Yu J-G, Yu L-Y, Yang H, Liu Q, Chen X-H, Jiang X-Y, et al. Graphene nanosheets as novel adsorbents in adsorption, preconcentration and removal of gases, organic compounds and metal ions. Science of The Total Environment. 2015;502:70-9.
[12] Chang C-F, Chang C-Y, Chen K-H, Tsai W-T, Shie J-L, Chen Y-H. Adsorption of naphthalene on zeolite from aqueous solution. Journal of colloid and Interface Science. 2004;277(1):29-34.
[13] Anbia M, Moradi SE. Removal of naphthalene from petrochemical wastewater streams using carbon nanoporous adsorbent. Applied Surface Science. 2009;255(9):5041-7.
[14] Liu T, Li Y, Du Q, Sun J, Jiao Y, Yang G, et al. Adsorption of methylene blue from aqueous solution by graphene. Colloids and Surfaces B: Biointerfaces. 2012;90:197-203.
[15] Xu J, Wang L, Zhu Y. Decontamination of bisphenol A from aqueous solution by graphene adsorption. Langmuir. 2012;28(22):8418-25.
[16] Pan N, Deng J, Guan D, Jin Y, Xia C. Adsorption characteristics of Th (IV) ions on reduced graphene oxide from aqueous solutions. Applied Surface Science. 2013;287:478-83.
[17]  Fazlollahi S., Hassani A., Borghei M., Pourzamani H, Study of Adsorption Isotherms and Kinetics of Naphthalene from Aqueous Solutions by Multi -Wall Carbon Nanotubes, Scientific Journal of Ilam University of Medical Sciences. 2016; 24 (1): 162-173 (In Persian).
[18] Karimi B., Rajaee M.S., Eisvand M., Habibi M., Application of UV/TiO2/H2O2 Advanced Oxidation to Remove Naphthalene from Water, J. of water and wastewater. 2016;27 (5): 53-63 (In Persian).
[19] Khodadadi A., Ganjidoust H., Ijad panah H., Treatment and Kinetic of Synthetic Wastewater Containing β-naphthol by Nano Titanium Oxide Coated on Activated Carbon, Iran. J. Health & Environ., 2012; 4 (4): 401-409 (In Persian).
[20] Koolivand H., Shahbazi A., Hashemi H., Removal of methylene blue from aqueous solution using graphene oxide nanosheets: kinetic and isotherm study, Modares Civil Engneering Journal. 2015; 15: 191-198 (In Persian).
[21] Kovtyukhova NI, Ollivier PJ, Martin BR, Mallouk TE, Chizhik SA, Buzaneva EV, et al. Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations. Chemistry of Materials. 1999;11(3):771-8.
[22] Deng J-H, Zhang X-R, Zeng G-M, Gong J-L, Niu Q-Y, Liang J. Simultaneous removal of Cd (II) and ionic dyes from aqueous solution using magnetic graphene oxide nanocomposite as an adsorbent. Chemical Engineering Journal. 2013;226:189-200.
[23] Yu Y, Murthy BN, Shapter JG, Constantopoulos KT, Voelcker NH, Ellis AV. Benzene carboxylic acid derivatized graphene oxide nanosheets on natural zeolites as effective adsorbents for cationic dye removal. Journal of hazardous materials. 2013;260:330-8.
[24] Lin Y, Xu S, Li J. Fast and highly efficient tetracyclines removal from environmental waters by graphene oxide functionalized magnetic particles. Chemical Engineering Journal. 2013;225:679-85.
[25] Li Y, Du Q, Liu T, Peng X, Wang J, Sun J, et al. Comparative study of methylene blue dye adsorption onto activated carbon, graphene oxide, and carbon nanotubes. Chemical Engineering Research and Design. 2013;91(2):361-8.
[26] Ai L, Jiang J. Removal of methylene blue from aqueous solution with self-assembled cylindrical graphene–carbon nanotube hybrid. Chemical Engineering Journal. 2012;192:156-63.
[27]  Wang H, Yuan X, Wu Y, Huang H, Zeng G, Liu Y, et al. Adsorption characteristics and behaviors of graphene oxide for Zn (II) removal from aqueous solution. Applied Surface Science. 2013;279:432-40.
[28] Debnath S, Maity A, Pillay K. Impact of process parameters on removal of Congo red by graphene oxide from aqueous solution. Journal of Environmental Chemical Engineering. 2014;2(1):260-72.
[29] Mishra AK, Ramaprabhu S. Functionalized graphene sheets for arsenic removal and desalination of sea water. Desalination. 2011;282:39-45.
[30]  Chen SQ, Wang Y. Microwave-assisted synthesis of a Co3O4–graphene sheet-on-sheet nanocomposite as a superior anode material for Li-ion batteries. Journal of Materials Chemistry. 2010;20(43):9735-9.
[31]  Li Y, Zhang P, Du Q, Peng X, Liu T, Wang Z, et al. Adsorption of fluoride from aqueous solution by graphene. Journal of colloid and interface science. 2011;363(1):348-54.
[32] Balati A, Shahbazi A, Amini MM, Hashemi SH, Jadidi K. Comparison of the efficiency of mesoporous silicas as absorbents for removing naphthalene from contaminated water. European Journal of Environmental Sciences. 2014;4(1):69-76.
[33] Akin I, Arslan G, Tor A, Ersoz M, Cengeloglu Y. Arsenic (V) removal from underground water by magnetic nanoparticles synthesized from waste red mud. Journal of hazardous materials. 2012;235:62-8.
[34] Cea M, Seaman JC, Jara A, Mora ML, Diez, Kinetic and thermodynamic study of chlorophenol sorption in an allophanic soil. Chemosphere. 2010 Jan 31;78(2):86-91.
[35] Sun Y, Yang S, Zhao G, Wang Q, Wang X. Adsorption of polycyclic aromatic hydrocarbons on graphene oxides and reduced graphene oxides. Chem Asian J. 2013;8:2755-61.
[36] Leng Y, Guo W, Su S, Yi C, Xing L. Removal of antimony (III) from aqueous solution by graphene as an adsorbent. Chemical Engineering Journal. 2012;211:406-11.
[37]  Pei Z, Li L, Sun L, Zhang S, Shan X-q, Yang S, et al. Adsorption characteristics of 1, 2, 4-trichlorobenzene, 2, 4, 6-trichlorophenol, 2-naphthol and naphthalene on graphene and graphene oxide. Carbon. 2013;51:156-63.
[38] Gök Ö, Özcan AS, Özcan A. Adsorption kinetics of naphthalene onto organo-sepiolite from aqueous solutions. Desalination. 2008;220(1):96-107.