ارزیابی خواص مکانیکی و دوام کامپوزیت های سیمانی مهندسی (ECC)

نویسندگان
1 عضو هیئت علمی گروه عمران دانشگاه گیلان
2 دانش آموخته دانشگاه گیلان
چکیده
کامپوزیت سیمانی مهندسی شده (ECC)، نوعی فرآورده سیمانی با مقاومت کششی و شکل پذیری بالا است. بروز رفتار کرنش - سخت شونده و ترک خوردگی متعدد به جای ترک های عمیق و گسترده در اثر اعمال بارهای کششی و خمشی، از جمله خواص منحصر به فرد آن محسوب می شود که موجب افزایش علاقه به استفاده از آن شده است. در این پژوهش کارایی، خواص مکانیکی و دوام مخلوط های مختلف ECC حاوی دو ماده معدنی ( سرباره آهن گدازی/ خاکستر بادی) به عنوان جایگزین بخشی از وزن سیمان و دو نوع سنگدانه (ماسه سیلیسی/ رودخانه ای) ارزیابی شدند. نتایج نشان داد که مخلوط های حاوی خاکستر بادی با وجود مقاومت مکانیکی پایین تر در مقایسه با مخلوط های حاوی سرباره، به طور قابل توجهی عملکرد بالاتری در بروز رفتار کرنش- سخت شونده در ناحیه پسا- ترک از خود نشان دادند. عملکرد مخلوط های ECC در برابر آزمایش های دوام (نفود تسریع شده یون کلر، مقاومت ویژه الکتریکی، انقباض خشک و خوردگی تسریع شده میلگرد) مطلوب ارزیابی شد و به لحاظ کمی به صورت سرباره > خاکستر بادی بود. در این پژوهش جهت محاسبه مقاومت کشش مستقیم مخلوط های ECC، یک مدل جدید (هندسه متفاوت) نسبت به دیگر مدل های استفاده شده توسط پژوهشگران، پیشنهاد و آزمایش شد. نتایج نشان داد که مقاومت کششی اندازه گیری شده با مدل جدید نسبت به مدل پیشین، بین10% تا 17% بالاتر بود.

کلیدواژه‌ها

موضوعات


عنوان مقاله English

Evaluation of mechanical properties and durability of engineered cementitious composites (ECC)

نویسندگان English

Ali Sadrmomtazi 1
Behzad Tahmouresi 2
چکیده English

One major weakness of concrete is the brittle fracture behaviour in tension, with low tensile strength and ductility. This brittleness has been recognized as a bottleneck hindering structural performances in terms of safety, durability and sustainability. The lack of structural ductility is due to brittle nature of concrete in tension which may lead to loss of structural integrity. Many infrastructure deterioration problems and failures can be traced back to the cracking and brittle nature of concrete. Many attempts have been made in the recent years to overcome these problems. To effectively solve these severe problems, a new type of composite, called as Engineered Cementitious Composites (ECC), reducing the brittle behaviour of concrete has been developed in recent decades. ECC with its flexible processing has emerged from laboratory testing to field applications leading to speedy construction, reduced maintenance and a longer life span for the Structures. Micromechanical design allows optimization of ECC for high performance, resulting in extreme tensile strain capacity while minimizing the amount of reinforcing fibers, typically less than 2% by volume. Tensile strain capacity exceeding 5% has been demonstrated on ECC reinforced with polyethylene and polyvinyl alcohol (PVA) fibers. Unlike ordinary cement-based materials, ECC strain hardens after first cracking, similar to a ductile metal, and demonstrates a strain capacity 350 to 550 times greater than normal concrete. Even at large imposed deformation, crack widths of ECC remain small, less than 80 μm. With intrinsically tight crack width and high tensile ductility, ECC represents a new generation of high performance concrete (HPC) material that offers significant potential to naturally resolving the durability problem of reinforced concrete structures. In the past few decades, substitution of mineral admixtures, such as fly ash (FA) and Ground Blast-Furnace Slag (GBFS), has been of great interest and gradually applied to practical applications of ECC. It has been found that incorporating high amount of FA can reduce the matrix toughness and improve the robustness of ECC in terms of tensile ductility. Additionally, unhydrated FA particles with small particle size and smooth spherical shape serve as filler particles resulting in higher compactness of the fiber/matrix interface transition zone that leads to a higher frictional bonding. This aids in reducing the steady-state crack width beneficial for long-term durability of the structure. In this study, the workability, mechanical properties and durability of ECC different mixtures contains two mineral materials (slag / fly ash) as to replace part of the cement weight and two types aggregate (Silica/ River sand) were evaluated. The results showed that mixtures containing fly ash despite lower mechanical strength to compared with mixtures containing slag, significantly have higher performance in strain- hardening behavior at post- cracking portion. ECC mixtures performance against the durability testing (Rapid chloride penetration, Electrical Specific Resistivity, Drying Shrinkage and Accelerated Reinforcement Corrosion) were appropriate and quantitatively was to form of slag> fly ash. In this study, in order to calculate the direct tensile strength of ECC mixtures, a new model (different geometry) compared to other models (used by prior researchers) proposed and tested. The its results showed that the tensile strength measured by the new model compared to the previous models, was higher 10% to 17%.

کلیدواژه‌ها English

Engineered cementitious composites
Mechanical properties
durability
[1] Bencardino F, Rizzuti L, Spadea G, Swamy RN. Implications of test methodology on post-cracking and fracture behaviour of steel fibre reinforced concrete. Composites Part B: Engineering. 2013; 46:31-38.
[2] Barros JA, Cunha VM, Ribeiro AF, Antunes JA. Post-cracking behaviour of steel fibre reinforced concrete. Materials and Structures. 2005;38(1):47-56.
[3] Li VC, Wu C, Wang S, Ogawa A, Saito T. Interface tailoring for strain-hardening polyvinyl alcohol-engineered cementitious composite (PVA-ECC). Materials Journal. 2002;99(5):463-472.
[4] Yang EH, Sahmaran M, YINGZI Y, Li VC. Rheological control in production of engineered cementitious composites. ACI Materials Journal. 2009;106(4):357-366.
[5] Wang S, Li VC. Engineered cementitious composites with high-volume fly ash. ACI Materials Journal. 2007;104(3):233-241.
[6] Ranade R, Zhang J, Lynch JP, Li VC. Influence of micro-cracking on the composite resistivity of engineered cementitious composites. Cement and Concrete Research. 2014; 58:1-2.
[7] Yıldırım G, Sahmaran M, Al-Emam MK, Hameed RK, Al-Najjar Y, Lachemi M. Effects of Compressive Strength, Autogenous Shrinkage, and Testing Methods on Bond Behavior of High-Early-Strength Engineered Cementitious Composites. ACI Materials Journal. 2015;112(3).
[8] Zhang Q, Li VC. Development of durable spray-applied fire-resistive Engineered Cementitious Composites (SFR-ECC). Cement and Concrete Composites. 2015; 60:10-16.
[9] Maalej M, Li VC. Flexural/tensile-strength ratio in engineered cementitious composites. Journal of Materials in Civil Engineering. 1994;6(4):513-28.
[10] Pan Z, Wu C, Liu J, Wang W, Liu J. Study on mechanical properties of cost-effective polyvinyl alcohol engineered cementitious composites (PVA-ECC). Construction and Building Materials. 2015; 78:397-404.
[11] Şahmaran M, Lachemi M, Hossain KM, Ranade R, Li VC. Influence of aggregate type and size on ductility and mechanical properties of engineered cementitious composites. ACI Materials Journal. 2009;106(3):308-16.
[12] Yang EH, Li VC. Strain-hardening fiber cement optimization and component tailoring by means of a micromechanical model. Construction and Building Materials. 2010;24(2):130-9.
[13] Marshall DB, Cox BN. A J-integral method for calculating steady-state matrix cracking stresses in composites. Mechanics of materials. 1988;7(2):127-133.
[14] Li VC, Leung CK. Steady-state and multiple cracking of short random fiber composites. Journal of Engineering Mechanics. 1992;118(11):2246-2264.
[15] Kanda T, Li VC. New micromechanics design theory for pseudo strain hardening cementitious composite. Journal of engineering mechanics. 1999;125(4):373-381.
[16] Li VC, Wu HC. Conditions for pseudo strain-hardening in fiber reinforced brittle matrix composites. Applied Mechanics Reviews. 1992;45(8):390-398.
[17] Redon C, Li VC, Wu C, Hoshiro H, Saito T, Ogawa A. Measuring and modifying interface properties of PVA fibers in ECC matrix. Journal of Materials in Civil Engineering. 2001;13(6):399-406.
[18] Li VC, Wang Y, Backer S. Effect of inclining angle, bundling and surface treatment on synthetic fibre pull-out from a cement matrix. Composites. 1990;21(2):132-140.
[19] Lin Z, Li VC. Crack bridging in fiber reinforced cementitious composites with slip-hardening interfaces. Journal of the Mechanics and Physics of Solids. 1997;45(5):763-787.
[20] Florida DO. Florida method of test for an accelerated laboratory method for corrosion testing of reinforced concrete using impressed current. FM 5. 2000;522.
[21] Hassan AA, Lachemi M, Hossain KM. Effect of metakaolin and silica fume on the durability of self-consolidating concrete. Cement and concrete composites. 2012;34(6):801-7.
[22] Binici H, Aksogan O, Durgun MY. Corrosion of basaltic pumice, colemanite, barite and blast furnace slag coated rebars in concretes. Construction and Building Materials. 2012; 37:629-37.
[23] Duan, P., Shui, Z., Chen, W. and Shen, C., Effects of metakaolin, silica fume and slag on pore structure, interfacial transition zone and compressive strength of concrete. Construction and Building Materials. 2013; 44:1-6.